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Abstract—Reading the text embedded in natural scene images
is essential to many applications. In this paper, we propose a
method for detecting text in scene images based on multi-level
connected component (CC) analysis and learning text component
features via convolutional neural networks (CNN), followed by
a graph-based grouping of overlapping text boxes. The multi-
level CC analysis allows the extraction of redundant text and
non-text components at multiple binarization levels to minimize
the loss of any potential text candidates. The features of the
resulting raw text/non-text components of different granularity
levels are learned via a CNN. Those two modules eliminate the
need for complex ad-hoc preprocessing steps for finding initial
candidates, and the need for hand-designed features to classify
such candidates into text or non-text. The components classified
as text at different granularity levels, are grouped in a graph
based on the overlap of their extended bounding boxes, then,
the connected graph components are retained. This eliminates
redundant text components and forms words or textlines. When
evaluated on the “Robust Reading Competition” dataset for
natural scene images, our method achieved better detection
results compared to state-of-the-art methods. In addition to its
efficacy, our method can be easily adapted to detect multi-oriented
or multi-lingual text as it operates at low level initial components,
and it does not require such components to be characters.

Keywords—Scene text detection; CNN; multi-level binarization;
multi-level connected components; graph-based grouping

I. INTRODUCTION

Text appears everywhere in our natural surrounding envi-
ronments such as in traffic signs, license plates, advertisement
billboards, business cards, building signs, labels on posted
parcels and on name plates. The textual content in these
images is a valuable source of information and useful for many
applications such as interactive tourists’ guidance, data mining
and providing text accessibility for visually impaired people
whether reading such text is a necessity for their everyday life
or simply for navigating or enjoying the world around them.

Although it bears similarity to OCR problems in traditional
document images, text detection in scene images is much more
challenging due to, on one hand, complex layout with variable
backgrounds and the high variations in text color, font, size and
orientation, and on the other hand, lighting/shadow/occlusion
problems introduced by acquisition conditions. New challenges
also emerge in scene images of modern cities such as detecting
multi-lingual text.

Most text detection systems are mainly composed of three
stages. Firstly, finding character/word candidates or regions
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Fig. 1. Examples of successful text detection results by the proposed method.
Correctly detected text zones are shown in green bounding boxes.

of interest. This could be done at pixel, interest point or
zone levels. Usually, this stage is the most challenging and
involves many complicated preprocessing steps. Secondly, the
filtering stage(s) where initial candidates are classified as text
or non-text components. Some methods use hand-designed
features and multiple filtering steps within this stage. Finally,
the grouping stage, in which text components are grouped into
characters, words or textlines. Grouping methods are typically
not adapted to multi-oriented or multi-lingual text.

In order to overcome the mentioned challenges in the three
text detection stages, we propose a novel method for text
detection in natural scene images. In the first stage, finding
initial candidates is performed by multi-level connected com-
ponent extraction. This module handles complex background
and variations in text scale/color by multiple binarizations.
The module extracts redundant components of text/non-text
at different granularity (text components could be parts of
characters, characters, parts of words etc. and could be found
multiple times). Our technique at this stage minimizes both the
preprocessing steps, and the possibility of loosing potential text
components before the next stages.

The features of the extracted raw components are then
learned via a CNN in the second stage. The CNN is trained as a
binary classifier to discriminate text from non-text components.
For the third stage, we propose a general grouping method
which could be easily adapted to multi-oriented text. The
classified text components are first aggregated to form mean-
ingful higher level components via linkage-based clustering
(for example, broken parts of the same character would be
grouped in the same cluster). Then, a graph is formed based
on overlapping criteria of the components bounding boxes.
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Fig. 2. Block diagram of the proposed method with its three modules. First, Multi-level Connected Component (CC) Analysis based on multi-level binarization.
Second, Feature Learning with the Convolution Neural Network from the raw multi-level CCs. Third, grouping of text components based on linkage clustering

and overlapping graph.

The connected graph components form text words. These
grouping steps do not pose assumptions related to the text
script/language.

Figure 1 shows example results of our proposed method,
all the text within the image has been accurately detected. Such
precise localization of the detected text allows the subsequent
recognition steps to be applied successfully. The remaining
sections of this paper are organized as follows: in Section II,
we review text detection methods which use techniques similar
to our work. Section III discusses the details of our proposed
method. The experimental evaluation and analysis of results
are presented in Section IV.

II. RELATED WORK

Existing scene text detection methods can be categorized
into two approaches: the traditional/classical approach based
on hand-crafted features and the deep learning approach where
features of text components are learned automatically. Both
rely on a first stage of finding initial text candidates or regions
of interest, as opposed to the holistic approach via fully
convolutional networks. An extensive review of state-of-the-
art in scene text detection can be found in the survey of Ye
and Doermann [1].

In the first two approaches, identifying initial candidates is
done using sliding windows [2], [3], connected components
[4], [5] or MSER interest points [6], [7]. We review here
the methods that use similar techniques to our method, in
particular, connected components for finding initial candidates,
and deep learning via CNN for text classification.

Epshtein et al. [5] extracted connected components from
the image based on Stroke Width Transform (SWT). The
CC extraction process is applied on both the image and its
complement. While Huang et al. [8] used the color information
in addition to the SWT. Liu et al. [9] applied a multi-scale
adaptive local thresholding operator to generate two comple-
mentary binary images. They extracted connected components
from both images. For the classification step, they all used a
set of rules based on hand-crafted features.

Huang et al. [10] used both sliding windows and MSER
for identifying regions of interest. MSER is used to reduce
the number of scanned windows. Then, they applied CNN to
classify the extracted regions. In another work of Wang et al.
[3], sliding windows are run over high resolution input images
to obtain a set of candidate textlines. The candidates are then
classified to text and non-text using a deep CNN.

Zhang et al. [11] extracted character candidates using
MSER. For classification, a CNN is used as a discriminative
codebook to compute a bank of responses for each candidate.
Then, an SVM classifier is used to decide the final prediction
as text or non-text image region.

Zhu et al. [12] used convolutional k-means where simple k-
means clustering is used to learn feature banks. Then, they used
confidence-rated AdaBoost to classify patches as foreground
(text) and background (non-text). A final step of CC extraction
from characters candidates using color and edge features is
applied to improve the word segmentation and change the
output to word level.

Our method proposes a multi-level connected component
extraction technique to prevent missing any possible candidate
text components. Discriminative features are learned from the
raw components via a CNN. A graph-based grouping technique
is proposed to aggregate the classified text components into
words. Our method does not make assumptions about the text
orientation or script, hence, it could be generalized to detect
multi-lingual and/or multi-oriented text.

II1. THE PROPOSED METHOD

Our proposed method with its 3-fold contributions aims at
creating a segmentation-free and accurate scene text detection
system. At each of the three stages of such a system, we
propose a novel technique that overcomes the challenges faced
by state-of-the-art methods. Figure 2 shows the architecture
of our proposed method. The first module handles multi-level
connected component extraction where a scene image is fed
to this module as input. Multiple binarizations are applied
on the input image and its complement before extracting the
connected components from each binary image. This ensures



the extraction of low-contrast, light-on-dark and low resolution
components. The resulting text and non-text components could
be broken and/or extracted multiple times.

The second module is a classification module composed
of a CNN that learns powerful features of the raw text and
non-text components in the training phase. In the test phase,
the trained CNN model classifies the components extracted
in module 1 into text or non-text. The third module aims
at creating the final output as text words from the compo-
nents classified as text in module 2. We propose a grouping
method in this module that starts by linkage-based clustering
to group broken and/or redundant components of the same
character/group of characters into the same cluster. Then,
text words are formed by finding the connected components
of a graph whose edges represent the amount of overlap
among the bounding boxes of text components. The details
of each module of the method are described in the following
subsections.

A. Multi-Level Connected Components Analysis

Working at the connected component (CC) level to find
initial text candidates is preferred to the pixel-level or interest
point level — which are noise-sensitive and slow —, and to
the sliding window level which cannot be easily adapted
to multiple scales and orientations among other problems.
However, CC extraction relies on the lossy binarization step,
and may result in broken text components. We propose a multi-
level CC extraction that overcomes those challenges.

Scene images may contain light text on dark background,
linked or broken characters due to low resolution or low con-
trast text due to the complex background or lighting problems.
A single binarization step whether adaptive or global cannot
separate the foreground components from the background.
We employ multi-level binarization to increase the probability
of finding all possible text candidates. At this step, we do
not filter out any binarized components. Figure 3 shows
three different binarized versions of two example images.
Each binarization reveals different components of the image.
Combining the components from all the binary images yields
redundant components, but it would minimize the number of
lost components. In our multi-level binarization, we perform
three different types of binarization one or more times with
different thresholds. Each binarization is considered as a filter,
and the choice of the binarization techniques and the number
of filters is performed experimentally. The chosen combination
of the binarized images allows us to retrieve the totality of the
regions of interest in the image.

The first binarization method is inspired by Chen et al.
[13], and is based on the idea that text strokes in the image
have complete contours. As pixels on the contours have
higher contrast than adjacent pixels, we compute the gradient
magnitude for each pixel in each of the RGB channels to
compute the local contrast, and generate an image with the
largest value of the gradient magnitude. The image is then
segmented into two parts: smooth regions (pixels with low
contrast) and non-smooth regions (pixels with high contrast).
Non-smooth regions are all considered as text regions. The
smooth regions which fill the non-smooth regions are also
extracted. A final binarized image is generated by merging

the extracted smooth regions with the non-smooth image. This
binarization has the ability to find low resolution components.

The second binarization is based on local adaptive thresh-
olding. From the histogram of the image we select an in-
dividual thresholding for each pixel based on the range of
intensity values in its local neighboring pixels. This operation
is repeated until it converges. The threshold is then found by
separating the histogram of intensity values into two classes.
The third binarization is computed from the HSV space where
the second binarization technique is applied on the complement
of the Hue channel. These two binarizations find low contrast
components and light-on-dark components.
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Fig. 3. Multi-level binarization results of two test images. From left-to-
right images are shown followed by their binarization results for: smooth/non-
smooth binarization, adaptive thresholding binarization on the original image
and on the complement of Hue channel. Note that some text components
appear in only one of the binary image.

After computing the multiple binarizations, CCs are ex-
tracted from all the binarized images. The extracted text
and non-text components could be broken and/or extracted
multiple times. This increases the probability of finding all
text components, hence minimizing the loss of any possible
text candidates at this early stage of the text detection system.
The redundancy in the extracted components is dealt with in
the next modules.

Figures 4 and 5 show examples of the CCs extracted from
the multi-level binarized images. Those collected candidates
are of different fonts, sizes and different backgrounds. They
can be parts of characters, multiple attached characters or
random non-text components (as in Figure 4) or exact text
characters (as in Figure 5).

The overall process of multi-level CC extraction is not
based on any assumption about the orientation of the text or its
script. The extracted components are not assumed to be of any
specific shape or size or to be connected as characters. This
allows our method — up to this stage — to be easily adaptable
to detect multi-oriented and/or multi-lingual text.
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Fig. 4. Samples of extracted connected components from different binariza-
tions of different images. The components are of different sizes, orientations
and shapes, and of variable type: letters, group of letters and varying non-text
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Fig. 5. Samples of extracted connected components from different binariza-
tions. Those are the most frequent type of text components.

B. Learning Text Component Features via a CNN Classifier

The previous multi-level CC extraction module, results in
thousands of raw text and non-text components with variable
content and size characteristics. The enclosing boxes of these
components are fed as separate input images to this classifica-
tion module. To compute the likelihood of a component being
text or not, the deep features of the components are learned
using a CNN classifier.

The CNN architecture is shown in Figure 6. Our net-
work is composed of a data layer, 4 convolutional layers, 2
pooling layers, 2 fully connected layers and a loss layer. As
followed in best practices of building deep CNN classifiers,
our convolutional layers are each followed by a rectified linear
unit layer (except the first one), and every two consecutive
convolution layers are followed by a pooling layer to reduce
the size of the features dimension. The two fully connected
layers generate the final 1-D feature vector for our binary
classification problem. The standard softmax function is used
in our loss layer. All input component images are normalized in
the data layer. As our input candidate components are relatively
small, we opted to use small kernels. The final fully connected
layer has only two output connections because we have two
classes: text and non-text.

Feature learning in CNN goes through two phases. In the
training phase, we feed the network with the training data and
their corresponding ground truth (the generation of ground
truth is explained below). Training data corresponds to all
the bounding boxes of the extracted multi-level connected
components represented as separate images.

Through the training process, different feature maps are
generated from text or the non-text component images at the
different network layers. The trained model is hence built to
be used in the test phase for classifying text versus non-text
components. In the test phase, the same steps of extracting
the multi-level connected components are followed to generate
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Fig. 6. Structure of the CNN classifier network. The ConvUnit(w,h,n)
represents a convolution layer of n features with wxh kernel size, connected
to a ReLUnit layer and pooling layer with kernels of size 2x2. Followed by
two fully connected layers of 160 and 2 outputs respectively.

input test component images. Each image is classified as a text
or a non-text component.

Our training/test samples are images of connected com-
ponents. However, in the datasets of scene text detection, the
ground truth is at the level of words or text-lines. Hence, we
prepare a ground truth at the connected component level as
follows. Based on the word bounding box in the ground truth
of the dataset, we label a connected component as text if it
overlaps with text bounding box in the ground truth with a
ratio higher than 0.8, otherwise, it is labeled as a non-text
components. This high overlap ratio yields accurate ground
truth labeling of our candidate connected components.

C. Graph-based Grouping of Text Components

For the third module of our method, we propose a general
grouping method which takes as input all the components
labeled as text in a test image by the classifier in the previous
module. The grouping method consists of two main steps.
First, linkage-based clustering which aggregates the redundant
and broken text components of the same character(s) into the
same clusters. In the second step, a graph is formed based on
overlapping criteria of the components bounding boxes of each
cluster. The connected graph components form text words.

In the first step, a euclidean distance matrix is computed
between the centers of each two text components. Then, a
dendrogram is created by a single-linkage hierarchical clus-
tering. The text component clusters are built in a bottom-
up fashion, where at each step, a pair of text components
are grouped into the same cluster if they are closest to each
other according to the distance matrix. Clusters are formed by
merging smaller clusters, and this pair-wise merging process
is repeated until no pairs can be further merged. This grouping



step forces broken components of the same character(s) to be
grouped in one cluster, as well as the redundant versions of
the same text component. A bounding box is created for the
text components within each cluster. These boxes represent the
input text candidates for the next grouping step.

The second step builds a graph where the bounding boxes
(text candidates) are the nodes. To create the edges, each two
boxes are processed at a time as follows. The overlap between
the extended bounding boxes of each two text candidates is
computed. Two candidates (nodes) are linked by an edge if
their overlap is higher than a threshold that is adaptive to the
scale of the boxes. The adjacent nodes in this graph represent
parts of the same word in the cases of successful grouping.
Finally, the connected components of this graph are extracted
as the detected text words. Figure 7 shows the described
grouping steps applied on an image.

Fig. 7. Left: original image with all the text components. Middle: output of
the first grouping step: the resulting boxes are mostly letters (or few merged
letters merged). Right: final grouping output: text grouped at word level.

The advantages of our grouping method could be shown
through its ability to find very small text components which
may be lost in the preceding modules. For example, the dots or
the small letters (or parts of letters) would be included in the
final word box in the grouping module. By extending the size
of the bounding box of a connected component with respect
to its original size, the small components will be recovered if
it has neighboring text component.

Our grouping method has also advantages over rule-based
methods which require many hand-tuned parameters. Our
method is based on hierarchical clustering of text components
centers and it is adaptive to scale of text components when
computing the overlapping graph. Moreover, the described
grouping steps do not pose assumptions related to the text
script or orientation.

This module concludes our proposed text detection method.
Figure 8 shows examples of successful detection results of our
method on the ICDAR2013 RRC dataset scene images [14].

IV. EXPERIMENTAL EVALUATION

We have implemented our proposed methods in a text
detection system. The system is evaluated on the standard
public dataset of the ICDAR2013 Robust Reading Competition
Challenge2: Focused Scene Text [14]. This dataset contains
462 images in total, split as 229 training images containing 848
words and 233 test images. We used the same split of the train
and test used in the competition setting. As for the evaluation
of the system, we use the standard recall, precision and f-
measure metrics proposed in the RRC competition [14] and
used in most scene text detection works. A detected bounding
box is considered as a match if it overlaps a ground truth
bounding box by more than 50%. The experiments and results
discussion are detailed in the following subsections.

Fig. 8. Examples of successful text detection results on 6 test images of the
RRC dataset [14]. The detected text is shown in green bounding boxes. The
detected regions are mostly precise and cover a word or a textline.

A. Implementation Details

To learn the features from the multi-level raw connected
components extracted from the images, we used the CNN
network in Figure 6 which shows the size of feature maps
and kernels of the different layers. It is trained by stochastic
gradient descent with back-propagation and a maximum num-
ber of iterations of 10*. After the multi-level CCs extraction,
we resize the input CC images to 96x96 pixels. The CNN
solver parameters are as follows. Weight decay is 5x10* and
momentum is 0.9. The learning rate policy is fixed and the base
learning rate is 10, The experiments have been conducted
using Caffe.

B. Results and Analysis

The number of inputs to the CNN network — the second
module of our method — depends on the number of filters used
for binarization in the multi-level CC extraction module. These
inputs are the text and non-text extracted component images.
In a first experiment, we would like to show the effectiveness
of the multi-level CC extraction in finding candidate text
components. Table I shows the number of the extracted text
and non-text components of the ICDAR2013 dataset, while
varying the number of binarization filters. The table also shows
the effect of multi-level CC extraction on the text classification
accuracy computed by the trained CNN network.

TABLE 1. THE EXTRACTED TEXT AND NON-TEXT CONNECTED
COMPONENTS OF THE RRC DATASET [14] USING MULTIPLE
BINARIZATIONS, AND THE RESULTING CNN CLASSIFICATION ACCURACY.

Number of filters ‘ Type Text Non-Text Total Accuracy
One Train 4920 4160 9080 -
binarization Test 4359 8100 12459 78.29%
Two Train 5980 4553 10533 -
binarizations Test 4465 8600 13065 87.97%
Three Train 6221 8519 14740 -
binarizations Test 5820 12289 18109 96.81%

Table I shows that using multiple binarizations significantly
improves text classification accuracy. The shown numbers of
extracted components are from both the training and the test
set, while the classification accuracy is shown for the test set.
The third experiment using three binarizations presents the best



results as we get the majority of the possible candidates in the
image. The problem of redundant components does not affect
the ability of the CNN network to learn, and the resulting
redundant text components are dealt with in the grouping step.
Our method aims to retain all possible text components, and it
is able to successfully classify parts-of-character components.

Secondly, we show our text detection results compared to
state-of-the-art text detection methods including some recently
published in 2017. Table II shows the text detection results
of our method applied on the RRC dataset[14]. Our method
outperforms state-of-the-art method by an F-score of 85.94%.
Figures 1 and 8 show qualitative results of our method. The
detected regions are in most of the cases precise and cover
a word or a textline if the space between the words of the
textline is very close to the spaces between characters in a
word in the same line.

TABLE II. TEXT DETECTION RESULTS OF THE PROPOSED METHOD
COMPARED TO STATE-OF-THE-ART METHODS ON THE ICDAR2013 RRC
DATASET [14]

Method \ Recall(%) Precision(%) F-measure(%)
Our method 82.28 89.94 85.94%
Zhu & Uchida.[15] 84.00 83.00 84.00%
Zhang et al.[16] 88.00 78.00 83.00%
He et al. [17] 73.00 93.00 82.00%
Faster R-CNN.[18] 75.00 86.00 80.00%
R-FCN [19] 76.00 90.00 83.00%

However, our method may fail in some cases as shown
in Figure 9. For example, some logos are mis-classified as
text. This is due to the similarity between some logos and text
characters. In other cases, parts of a word are missed due to
bad lighting conditions or very low resolution.

Fig. 9. Examples of failure cases including: strong highlights, transparent
text and very small text. Red boxes show missed text and green boxes show
correctly detected text.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This paper has presented a novel system for scene text
detection that combines multi-level connected component ex-
traction with CNN-based feature learning to classify text and
non-text components, followed by graph-based grouping of
text components.

The multi-level CC extraction works on low level text
components without a specific orientation, and minimizes the
loss of any possible text candidates. This allows the scene text
detection system to be easily adapted to multi-lingual and/or
multi-oriented text detection. The CNN classification network

learns discriminative features of the extracted text and not-
text component images. This strong classifier is able to handle
text components of different fonts, sizes and orientations,
in addition to non-text components of different shapes. The
graph-based grouping handles both the redundancy and the
broken parts of text components.

Overall, these 3-fold contributions have led to a powerful
scene text detection system that performs better than state-of-
the-art systems. For future work we would like to extend our
system to detecting multi-lingual text, and to investigate the
technique of bounding box regression as a grouping method
to handle arbitrarily oriented text.
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