
Author’s Accepted Manuscript

Improving handwritten chinese text recognition
using neural network language models and
convolutional neural network shape models

Yi-Chao Wu, Fei Yin, Cheng-Lin Liu

PII: S0031-3203(16)30447-2
DOI: http://dx.doi.org/10.1016/j.patcog.2016.12.026
Reference: PR5998

To appear in: Pattern Recognition

Received date: 26 February 2016
Revised date: 23 December 2016
Accepted date: 24 December 2016

Cite this article as: Yi-Chao Wu, Fei Yin and Cheng-Lin Liu, Improving
handwritten chinese text recognition using neural network language models and
convolutional neural network shape models, Pattern Recognition,
http://dx.doi.org/10.1016/j.patcog.2016.12.026

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/pr

http://www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2016.12.026
http://dx.doi.org/10.1016/j.patcog.2016.12.026

Improving Handwritten Chinese Text Recognition Using
Neural Network Language Models and Convolutional

Neural Network Shape Models

Yi-Chao Wua, Fei Yina, Cheng-Lin Liua,b,c,∗

aNational Laboratory of Pattern Recognition (NLPR)
Institute of Institute of Automation of Chinese Academy of Sciences

Beijing 100190, China
bUniversity of Chinese Academy of Sciences, Beijing, China

cCAS Center for Excellence in Brain Science and Intelligence Technology, Beijin, China

Abstract

Handwritten Chinese text recognition based on over-segmentation and path search in-

tegrating multiple contexts has been demonstrated successful, wherein the language

model (LM) and character shape models play important roles. Although back-off n-

gram LMs (BLMs) have been used dominantly for decades, they suffer from the data

sparseness problem, especially for high-order LMs. Recently, neural network LMs

(NNLMs) have been applied to handwriting recognition with superiority to BLMs.

With the aim of improving Chinese handwriting recognition, this paper evaluates the

effects of two types of character-level NNLMs, namely, feedforward neural network

LMs (FNNLMs) and recurrent neural network LMs (RNNLMs). Both FNNLMs and

RNNLMs are also combined with BLMs to construct hybrid LMs. For fair comparison

with BLMs and a state-of-the-art system, we evaluate in a system with the same char-

acter over-segmentation and classification techniques as before, and compare various

LMs using a small text corpus used before. Experimental results on the Chinese hand-

writing database CASIA-HWDB validate that NNLMs improve the recognition perfor-

mance, and hybrid RNNLMs outperform the other LMs. To report a new benchmark,

we also evaluate selected LMs on a large corpus, and replace the baseline character

∗Corresponding author
Email addresses: yichao.wu@nlpr.ia.ac.cn (Yi-Chao Wu), fyin@nlpr.ia.ac.cn (Fei

Yin), liucl@nlpr.ia.ac.cn (Cheng-Lin Liu)

Preprint submitted to Pattern Recognition December 27, 2016

classifier, over-segmentation, and geometric context models with convolutional neural

network (CNN) based models. The performance on both the CASIA-HWDB and the

ICDAR-2013 competition dataset are improved significantly. On the CASIA-HWDB

test set, the character-level accurate rate (AR) and correct rate (CR) achieve 95.88%

and 95.95%, respectively.

Keywords: Handwritten Chinese text recognition, Feedforward neural network

language model, Recurrent neural network language model, Hybrid language model,

Convolutional neural network shape models

1. Introduction

For the past forty years, the field of handwritten Chinese text recognition (HCTR)

has observed tremendous progresses [1, 2]. However, it remains a challenging prob-

lem due to the diversity of writing styles, the character segmentation difficulty, large

character set and unconstrained language domain. The recognition approach based on5

over-segmentation by integrating character classifier, geometric and linguistic context

models has been demonstrated successful in handwritten text recognition [3], among

which both the linguistic context model (i.e., language model) and the character shape

models are of great importance.

Statistical language models, which give the prior probability of a sequence of char-10

acters or words, play an important role in many applications such as character and

speech recognition, machine translation and information retrieval, etc. Although back-

off N-gram language models (BLMs) were proposed over twenty years ago [4, 5] and

have been used in handwritten text recognition for more than ten years, they are still

considered as a favorable choice and have performed superiorly for decades. BLMs15

have been widely applied in a vast variety of text recognition systems [3, 6–13], and

have boosted the recognition performance substantially.

Generally, higher order language models can capture longer context patterns so as

to estimate the sequence probability more accurately. Carpenter [14] found that the

performance of character N-gram can be significantly improved until 8-gram, given20

sufficient training samples. However, traditional BLMs suffer from the data sparse-

2

ness problem, as the number of parameters increases exponentially with the length of

the context (i.e., the curse of dimensionality), preventing these models from estimating

context stably. Recently, a new type of language model called neural network language

model (NNLM) has been proposed to address the data sparseness based on a contin-25

uous representation of words [15], and achieves great perplexity reduction compared

with BLMs. Since then, NNLMs have been successfully used in speech recognition

[16, 17], machine translation [18, 19], and handwriting recognition [20, 21]. Mean-

while, many extensions of NNLMs and related algorithms have been proposed, with

the aim of improving the model performance [17, 22–25] or reducing the time com-30

plexity [26–29]. Particularly, the previous work has focused on either feedforward

NNLMs (FNNLMs) [15, 16, 18–21] or recurrent NNLMs (RNNLMs) [17, 28, 30, 31].

Nevertheless, to the best of our knowledge, except for our previous work on FNNLMs

[21], there is no systematic evaluation of NNLMs for over-segmentation based text

recognition systems.35

Apart from the language model, character classifier [32], over-segmentation [21,

33, 34] and geometric context models [35] (called shape models generally in this pa-

per) are also important to the text recognition performance. CNN based classifiers

for Chinese characters have reported superior performance in ICDAR 2013 compe-

tition [36], where CNNs reported much higher accuracies than traditional classifiers.40

Using CNNs, the handwriting recognition community has reported many useful and

important achievements [37–39] to improve the recognition accuracy. Recently, by in-

tegrating the traditional normalization-cooperated direction-decomposed feature map

(directMap) with the deep CNN, Zhang et al. [40] obtained new highest accuracies for

both online and offline sessions on the ICDAR-2013 competition database. For over-45

segmentation, there have been many algorithms to deal with touching characters, but

most of them are based on heuristic rules [33, 34, 41, 42], which make it very difficult

to generalize from one application to another. A few learning based techniques have

been explored [10, 43, 44], however, only the method in [44] was successfully applied

in HCTR, and is only suitable for the single-touching situation. As for the geometric50

context models, although many researchers proved it can improve the recognition ac-

curacy [3, 9, 35, 45, 46], there has been no work using deep learning based geometric

3

models.

In this paper, we evaluate the effects of two types of character-level NNLMs,

namely, FNNLMs and RNNLMs, with the aim of improving Chinese handwriting55

recognition. Both FNNLMs and RNNLMs are also combined with BLMs to construct

hybrid LMs. For fair comparison with BLMs and a state-of-the-art system, we evaluate

in a system with the same character over-segmentation and classification techniques as

before, and compare various LMs using a small text corpus that were used by a previous

system. In experiments on the Chinese handwriting database CASIA-HWDB, the com-60

parison of a number of variations of LMs shows that the NNLMs improve the recogni-

tion performance, and hybrid RNNLMs outperform the other LMs. To provide a new

benchmark, we then evaluate selected LMs on a large corpus. Also, we replace all the

baseline character classifier, over-segmentation algorithm, and geometric context mod-

els with CNN-based models in the system for further improving the accuracy of HCTR.65

By doing these, the performance on both the CASIA-HWDB and the ICDAR-2013

competition dataset are improved significantly. Specifically, on the CASIA-HWDB

dataset, the character-level accurate rate (AR) and correct rate (CR) achieve 95.88%

and 95.95%, respectively compared to the previous results of 90.75% AR and 91.39%

CR (with candidate character augmentation) [3], 91.73% AR and 92.37% CR (with70

language model adaptation) [12], 95.21% AR and 96.28% CR (with CNN character

classifier) [32].

The major contributions of this work are in three respects. First, we perform a

comprehensive evaluation of NNLMs in handwritten Chinese text recognition and pro-

pose hybrid NNLMs to improve the performance. Second, we apply CNNs to over-75

segmentation and geometric context modeling in addition to character recognition.

Third, by training NNLMs on large corpus and integrating CNN shape models, we

achieve new state-of-the-art performance on standard datasets. In addition, we analyze

the upper bound of performance of the text recognition system by calculating the lattice

error rate, which shows the potential of improvement in the future.80

The rest of this paper is organized as follows: Section 2 reviews some related

works; Section 3 gives an overview of the handwritten Chinese text recognition system;

Section 4 describes the FNNLMs and RNNLMs, as well as techniques for accelerat-

4

ing them; Section 5 presents the CNN based models, including character classifier,

over-segmentation algorithm, and geometric context models; Section 6 presents exper-85

imental results, and Section 7 offers concluding remarks.

2. Related works

The neural network architecture has a strong impact on the performance of NNLMs,

and comparative studies have been conducted by some researchers [28, 47–51]. Mikolov

et al. [28] gave an empirical comparison between RNNLMs and FNNLMs on two cor-90

pora, and found that simple RNNLMs outperformed the standard FNNLMs in terms of

perplexity (PPL) on both the Penn Tree Bank and the Switchboard corpus. Mikolov et

al. [47] presented PPL results obtained with several advanced language modeling tech-

niques, including some types of NNLMs, and the results demonstrated the superiority

of RNNLMs. However, neither of them made comparisons in practical speech or text95

recognition systems, where the inputs are often contaminated by noises. Sundermeyer

et al. [48] compared recurrent Long Short-Term Memory (LSTM) NNLMs, which can

be considered as a variant of RNNLMs, with FNNLMs on a well-tuned French speech

recognition task. Their results showed that LSTM-NNLMs achieved lower PPL than

FNNLMs, and also reduced the word error rate (WER). This work was extended in100

[49], to compare BLMs with FNNLMs, RNNLMs, and LSTM-NNLMs on two large-

vocabulary speech recognition tasks. The results showed that both LSTM-NNLMs and

RNNLMs outperformed FNNLMs in terms of PPL and WER. Arisoy et al. [50] even

compared deep FNNLMs with RNNLMs, and there seemed to be no evident improve-

ments in PPL or WER for deep models. Almost all the previous works validate the105

superiority of RNNLMs to FNNLMs, except for [51], where RNNLMs was outper-

formed by a 10-gram FNNLM in PPL. However, the final result of BLEU on a large

scale English to French translation task was identical for both network structures.

In the field of handwritten text recognition, only a few people have investigated the

potential of NNLMs [20, 21, 52]. Zamora-Martı́nez et al. [20] integrated FNNLMs in110

the decoding process of three state-of-the-art systems for English handwriting recog-

nition. Experimental results demonstrated that consistent WER reductions can be

5

achieved by FNNLMs when compared with BLMs on the three tested systems. Li

et al. [53] applied RNNLMs to the n-best rescoring stage of the state-of-the-art BBN

Byblos OCR (optical character recognition) system for handwriting recognition and115

achieved significant improvement. Our work [21] was the first to investigate the ef-

fects of NNLMs in handwritten Chinese text recognition. The recognition results on

the CASIA-HWDB database [54] showed that simplified NNLMs and BLMs of the

same order performed comparably, and hybrid models constructed by interpolating

NNLMs and BLMs improved the recognition performance significantly. However, to120

our knowledge, in either English or Chinese handwritten text recognition, NNLMs

have not been evaluated systematically.

On the other hand, many works concerning character shape model and geometric

context have been proposed for handwritten text recognition. For character classifica-

tion, traditional methods usually involve character normalization, feature extraction,125

and classifier design, which have been reviewed in [55, 56]. Nowadays, the solu-

tion of handwritten Chinese character recognition (HCCR) has been changed from

traditional methods to CNNs because of their superior performances. The first re-

ported successful use of CNN for HCCR is the multi-column deep neural network

[37]. Alternately trained relaxation convolutional neural network was proposed by [38]130

for offline HCCR. The methods of [39, 40], by combining traditional feature extrac-

tion methods such as Gabor and gradient feature maps with deep CNN, also obtained

very high recognition accuracies. Learning based over-segmentation has been explored

for decades, and has achieved great success in separating characters with high recall

rate [10, 43, 44]. The method referred to as GraySeg [10] combines the output of135

a sliding window classifier and boundaries of connected components (CCs) for over-

segmentation, and has led to superior text recognition performance on public bench-

mark datasets. Xu et al. [44] proposed an effective over-segmentation method with

learning-based filtering using geometric features for single-touching Chinese handwrit-

ing. The geometric context also plays an important role in character string recognition140

[3, 9, 35, 45, 46]. Zhou et al. [9, 35] elaborated the geometric context models into

unary and binary, character class dependent and class-independent models in online

handwriting recognition. Wu et al. [46] demonstrated that geometric context is bene-

6

ficial to handwritten numeral string recognition, and they also proposed an improved

binary geometric model to further improve the system performance. Yin et al. [57]145

elaborated the geometric context models for offline handwriting and applied to tran-

script mapping of handwritten Chinese documents.

3. System overview

Input text line

Over-segmentation

Segments combination

Path search

Result string

Consecutive
primitive segments

Character
candidate lattice

Character recognition

Segmentation
candidate lattice

Character
classifier

Language
model

Geometric
model

Figure 1: System diagram of handwritten Chinese text line recognition.

Our system is based on the integrated segmentation-and-recognition framework,

which typically consists the steps of over-segmentation of a text line image, construc-150

tion of the segmentation-recognition candidate lattice, and path search in the lattice

with context fusion. The diagram of our system is shown in Fig. 1, and the tasks of

document image pre-processing and text line segmentation are assumed to have been

accomplished externally.

First, the input text line image is over-segmented into a sequence of primitive image155

segments by connected component analysis and touching pattern splitting 1 [3, 33] (Fig.

1We first use existing over-segmentation technique in evaluating NNLMs, and later apply CNN to over-

segmentation for higher recognition performance.

7

(a)

(b)

(c)

Figure 2: (a) Over-segmentation of a text line; (b) Segmentation candidate of (a); (c) Character candidate

lattice of the thick path in (b).

2(a)), so that each segment is a character or a part of a character. Then, one or more

consecutive segments are combined to generate candidate character patterns, forming

a segmentation candidate lattice as shown in Fig. 2(b), and each path in this lattice is

called a candidate segmentation path. Each candidate pattern is classified to assign a160

number of candidate character classes using a character classifier, and all the candidate

patterns in a candidate segmentation path form a character candidate lattice, which is

shown in Fig. 2(c). All of these character candidate lattices are merged to construct

the segmentation-recognition lattice of the input text line, and each path in this lattice

is constructed by a character sequence paired with a candidate pattern sequence, which165

is called a candidate segmentation-recognition path. The rest of the task is to evaluate

each path by fusing multiple contexts and to search the optimal path with minimum

cost or maximum score to obtain the segmentation and recognition result.

We denote a sequence of candidate character patterns as X = x1...xm. Each candi-

8

date character is assigned candidate class (denoted as c i) by a character classifier, and170

then the result of text line recognition is a character string C = c1...cm. In this work,

we formulate the task of string recognition from Bayesian decision view, and adopt the

path evaluation criterion presented in [3] which integrates the character classification

score, geometric context [57] and linguistic context. For saving space, we give the

criterion directly below, and more details can be found in [3].175

Denote the character classifier output of candidate class c i for the ith character

pattern xi as P (ci|xi). The linguistic context is denoted as P (ci|hi), where hi de-

notes the history of ci (see Section 4). The geometric context models give the unary

class-dependent geometric (ucg) score, unary class-independent geometric (uig) score,

binary class-dependent geometric (bcg) score and binary class-independent geometric180

(big) score, denoted as P (ci|gucgi), P (zpi = 1|guigi), P (ci−1, ci|gbcgi), and P (zgi =

1|gbigi), respectively, where gi denotes corresponding geometric features, and the out-

put scores are given by geometric models classifying on features extracted. We obtain

a log-likelihood function f(X,C) for the segmentation-recognition path:

f(X,C) =
m∑
i=1

(wi logP (ci|xi) + λ1 logP (ci|gucgi) + λ2 logP (zpi = 1|guigi) +

λ3 logP (ci−1, ci|gbcgi) + λ4 logP (zgi = 1|gbigi) + λ5 logP (ci|hi)), (1)

where wi is the word insertion penalty used to overcome the bias to short strings,185

for which we utilize the term of Weighting with Character Pattern Width (WCW) [3],

λ1-λ5 are the weights to balance the effects of different models and are optimized

with Maximum Character Accuracy (MCA) criterion [3]. Via confidence transforma-

tion (transforming classifier output scores to probabilities), the six models, namely,

one character classifier, four geometric models and one character linguistic model, are190

combined to evaluate the segmentation paths. As for path search, a refined frame-

synchronous beam search algorithm [3] is employed to find the optimal paths in two

steps: first retain a limited number of partial paths with maximum scores at each frame,

and then find the globally optimal path in the second step.

9

4. Neural network language models195

To overcome the data sparseness problem of traditional BLMs, we introduce two

types of NNLMs including FNNLMs and RNNLMs in this section.

If the sequence C contains m characters, P (C) can be decomposed as:

p(C) =

m∏
i=1

p(ci|ci−1
1), (2)

where ci−1
1 =< c1, ..., ci−1 > denotes the history of character ci. For an N-gram

model, it only considers the N − 1 history characters in (2):200

p(C) =
m∏
i=1

p(ci|ci−1
i−N+1) =

m∏
i=1

p(ci|hi), (3)

where hi = ci−1
i−N+1 =< ci−N+1, ..., ci−1 > (h1 is null). Although FNNLMs can be

trained with larger context sizes than BLMs, it is intrinsically an N-gram LMs as well.

However, RNNLMs can get rid of limited context size and capture unbounded context

patterns in theory. Therefore, we have h i = ci−1
1 in this case.

Input
layer

P

P

P

Projection
layer

Shared
weights

H

Hidden
layer

V

(|)i j ip c h

Output
layer

2i Nc

1i Nc

1ic

Figure 3: Architecture of FNNLM with one hidden layer. P is the size of one projection, and H,V are the

sizes of the hidden and output layer, respectively.

10

4.1. Feedforward neural network language models205

In FNNLMs, history characters (or words for English texts) 2 are projected into a

continuous space to perform an implicit smoothing and estimate the probability of a

sequence. Both the projection and estimation can be jointly performed by a multi-layer

neural network. The original FNNLM model was proposed by Bengio [15] to attack

the curse of dimensionality, and the basic architecture with one hidden layer is depicted210

in Fig. 3.

The input of the N-gram FNNLM is formed by concatenating the information of

N − 1 history characters hi, while the outputs are the posterior probabilities of all the

characters in the vocabulary:

p(ci = ωj |hi), j = 1, . . . , V, (4)

where V is the size of the vocabulary, and ωj denotes a character class in the vocabu-215

lary. The network functions as follows:

(1) Each of the previous N − 1 input characters is initially encoded as a vector with

length V using the 1-of-V scheme.

(2) Then, each 1-of-V representation of character is projected to a lower dimensional

vector denoted as r in a continuous space. In fact, each column of the P × V220

dimensional projection matrix corresponds to a distributed representation, and all

the weights of the projection layer are shared.

(3) After step 2, if we denote the weights between the projection layer and the hid-

den layer as WP,H whose dimension should be H × ((N − 1) × P) using the

column-major form, the N − 1 history characters’ distributed representations as225

R = [rT
i−N+1, ..., r

T
i−1]

T , then the hidden layer outputs S can be computed as:

S = tanh(WP,H ∗R), (5)

where tanh(·) is the hyperbolic tangent activation function performed element

wise. If there are multiple hidden layers, the same processing of Eq. (5) applies to

the succeeding hidden layer with the former hidden layer outputs as inputs.

2We take characters instead of words as the elements (grams) in Chinese vocabulary, but may term char-

acters and words interchangeably when referring to previous works.

11

(4) Finally, the prediction of all the characters in the vocabulary can be calculated by230

M = WH,O ∗ S, (6)

O = exp(M)/

V∑
i=1

exp (mi), (7)

where WH,O is the V × H dimensional weight matrix of the output layer, M is

the vector of the activation values calculated before softmax normalization, m i is

the ith element of M . The exp(·) function as well as the division function are

performed element wise.235

The above formulas have absorbed the bias items into the weight parameters for the

sake of illustration simplicity [58]. After all the above operations, the jth component

of O, denoted as oj , corresponds to the probability p(ci = ωj|hi). The standard back-

propagation algorithm is used in training to minimize the regularized cross-entropy

criterion:240

E = −
V∑

j=1

tj log oj + β(|WP,H |22 + |WH,O|22), (8)

where tj is the desired output, which is 1 for the next character in the training sentence,

and 0 for the others.

4.2. Recurrent neural network language models

RNNLMs were firstly proposed in [17]. Its architecture (Fig. 4) is similar to that of

FNNLMs, except that the hidden layer involves recurrent connections. The RNNLM245

embeds word/character representation projection as well, and there are mainly three

stages for estimation:

(1) The input R(t) of the time step t is firstly formed by concatenating two parts:

vector x(t − 1) representing the previous word c i−1 by 1-of-V coding, and the

previous hidden layer output S(t− 1), expressed as:250

R(t) = [x(t− 1)TS(t− 1)T]T . (9)

12

Input
layer

H

Hidden
layer

V

(|)i j ip c h

Output
layer

1ic

Recurrent
connection

Figure 4: Architecture of RNNLM. H,V are the sizes of the hidden layer and the output layer, respectively.

(2) The input R(t) is then separately projected to a continuous vector S(t), which is

also the hidden layer for the next time step:

S(t) = sigm(WI,H ∗ x(t− 1) +WH,H ∗ S(t− 1)), (10)

where sigm(·) is the sigmoid activation function performed element wise, W I,H

and WH,H are H × V projection and H × H recurrent weight matrices, respec-

tively.255

(3) The probabilities of all the words in the vocabulary are estimated in the same way

as the 4th step of FNNLMs in Section 4.1.

The RNNLM is trained by minimizing a regularized cross-entropy criterion simi-

lar to that in Eq. (8). However, the recurrent weights are optimized using the back-

propagation through time (BPTT) algorithm [28], and the truncated BPTT is used to260

prevent the gradient vanishing or explosion problems.

The main difference between FNNLMs and RNNLMs lies in the representation

of the history. For FNNLMs, the history is restricted to limited previous characters;

while for RNNLMs, because of the recurrent connection, the hidden layer represents

13

the whole history of text theoretically. In this way, RNNLMs can efficiently explore265

the context of longer sequence than FNNLMs.

4.2.1. RNN maximum entropy (RNNME) models

It was observed that for use with larger corpus, the architecture of RNNLMs should

have more hidden units [30], otherwise, the performance can be even inferior to that

of BLMs. However, the increase of hidden layer size also increases the computational270

complexity. To overcome this problem, Mikolov et al. combined RNNLMs with maxi-

mum entropy models [30]. The resulting model, called RNNME, can be trained jointly

with BPTT. The RNNME model yielded promising performance with relatively small

hidden layer sizes.

The maximum entropy model can be seen as a weight matrix that directly connects275

the input layer and the output layer in neural networks. When using N-gram features

[59], the direct connection part can offer complementarity to RNNLMs, so that RN-

NME can achieve superior performance with relatively simple structures. Furthermore,

it is natural to improve the efficiency of RNNME using hashing, and the RNNME can

be viewed as a pruned model with a small hash array.280

4.3. Hybrid language models

For use with large vocabulary tasks, it is a common practice to linearly interpolate

an NNLM with a standard BLM for further improvement [19]. In such hybrid language

models (HLMs), the interpolation weights are usually estimated by minimizing the

perplexity (PPL) on a development dataset.285

To overcome the high computational complexity, NNLMs are usually simplified

with simple structures or approximation techniques. The simplified models are then

combined with BLMs to give hybrid models. Due to the great complementarity of

NNLMs to BLMs [15, 16, 47, 60], it was observed that even NNLMs with moderate

performance can considerably improve the performance of HLMs [21]. This can be290

attributed to the fact that NNLMs and BLMs learn very different distributions [29]. We

will show experimental results to validate this kind of complementarity in Section 6.

14

4.4. Acceleration

NNLMs suffer from high computational complexity in both training and testing,

due to the layer-by-layer matrix computation, unlike BLMs that calculate and retrieve295

probabilities directly. Considering that the complexity of NNLMs is basically propor-

tional to O(|V |) [15], i.e., the softmax operation of output layer dominates the pro-

cessing time, there have been two mainstream techniques for acceleration: short-list

and output factorization, which are outlined as follows.

4.4.1. Short-list300

Inspired from the work of Bengio et al. [15], Schwenk et al. proposed the short-

list method [19] and successfully applied it to lattice rescoring of speech recognition

systems. This method chooses the s (s � V) most frequent words, called as a short-

list, to reduce the output units of the neural network. The output probabilities are then

calculated as:305

P̂ (ci|hi) =

⎧⎪⎨
⎪⎩
P̂N (ci|hi, L) · PB(hi|L), if ci ∈ short-list

P̂B(ci|hi), otherwise
(11)

where P̂N denotes the probability of words in the short-list calculated by NNLMs, P̂B

is the probability given by standard BLMs, the random variable L defines the event that

the word to be predicted is in the short-list, and PB(hi|L) is given by:

PB(hi|L) =
∑

ci∈short-list

P̂B(ci|hi). (12)

For further simplification of the short-list method [19], an extra output unit is added

for all the words that are not in the short-list, and its probability is learned by the neural310

network. We simply assume that this probability is sufficiently close to the probability

mass reserved by the BLM. Thus, (11) can be modified as:

P̂ (ci|hi) =

⎧⎪⎨
⎪⎩
P̂N (ci|hi), if ci ∈ short-list

P̂B(ci|hi), otherwise
(13)

It has been observed that there is no significant difference between the methods with

and without renormalization [19]. Therefore, we can easily see that the time complexity

is approximately reduced to O(|s|) by the short-list method.315

15

4.4.2. Output factorization

The idea of output factorization was originated from [26] (based on [61] in the con-

text of maximum entropy models), where a binary hierarchical clustering constrained

by the prior knowledge is used to decompose the output layer hierarchically, so that the

complexity is reduced to log2 |V |. Since the construction of the hierarchical structure320

is not trivial, class-based models are usually adopted in practice. In this model, all the

words are categorized into a smaller number of classes, and the word probability at the

output layer can be factorized as

p(ci|hi) = p(class(ci)|hi) ∗ p(ci|class(ci), hi). (14)

This shows that we can normalize the class distribution and the class-specific word

distribution separately. The class-based output factorization has been observed to bring325

about 15 times speedup against models which uses full vocabulary of size 10K, and was

said to be a more promising approach than the short-list method [28].

The methods for constructing word classes have been investigated in [62]. Al-

though frequency-based categorization does not achieve better performance compared

with likelihood-based categorization [63, 64] in terms of PPL, it has great advantage in330

speed. Therefore, we use frequency-based categorization for a better tradeoff between

performance and speed. Specifically, we employ a modified algorithm which groups

words based on square-root of the frequency instead of the frequency itself [65].

5. Convolutional neural network shape models

With the impact of the success of deep learning [66, 67] in different domains, we335

consider altering the modules of HCTR framework, namely, character classifier, over

segmentation, and geometric context models from traditional methods to convolutional

neural network (CNN) [68] based models. These models take character or text images

as input, and so, are called shape models in general.

5.1. Character classifier340

In this work, we build a 15-layer CNN as the character classifier as shown in Ta-

ble 1, which is similar to the one proposed in [40]. Similar to the domain-specific

16

Table 1: CNN character classifier configuration. The first row is the bottom layer. k, s and p stand for kernel

size, stride and padding size, respectively.

Type Configurations

input 9 × 32 × 32 extended directMaps

Convolution #maps: 50, k: 3 × 3, s:1, p:1, dropout: 0.0

Convolution #maps: 100, k: 3 × 3, s:1, p:1, dropout: 0.1

Convolution #maps: 100, k: 3 × 3, s:1, p:1, dropout: 0.1

MaxPooling Window: 2 × 2, s: 2

Convolution #maps: 150, k: 3 × 3, s:1, p:1, dropout: 0.2

Convolution #maps: 200, k: 3 × 3, s:1, p:1, dropout: 0.2

Convolution #maps: 200, k: 3 × 3, s:1, p:1, dropout: 0.2

MaxPooling Window: 2 × 2, s: 2

Convolution #maps: 250, k: 3 × 3, s:1, p:1, dropout: 0.3

Convolution #maps: 300, k: 3 × 3, s:1, p:1, dropout: 0.3

Convolution #maps: 300, k: 3 × 3, s:1, p:1, dropout: 0.3

MaxPooling Window: 2 × 2, s: 2

Convolution #maps: 350, k: 3 × 3, s:1, p:1, dropout: 0.4

Convolution #maps: 400, k: 3 × 3, s:1, p:1, dropout: 0.4

Convolution #maps: 400, k: 3 × 3, s:1, p:1, dropout: 0.4

MaxPooling Window: 2 × 2, s: 2

Full connection #hidden units: 1600 , dropout: 0.5

Full connection #hidden units: 200, dropout: 0.0

Softmax #units: 7357

knowledge incorporated in CNN [69], we extract eight 32 × 32 directMaps using line

density projection interpolation normalization [70], as used in [40] as well. Besides

the directMaps, we resize the original character image to 32 × 32 while keeping the345

aspect ratio as an extra input feature map, which was found to improve the network

convergence. The filters of convolutional layers are with a small receptive field 3 × 3,

and all the convolution stride is fixed to one. The number of feature maps is increased

from 50 (layer-1) to 400 (layer-12) gradually. To further increase the depth of the net-

work so as to improve the classification capability, the spatial pooling is implemented350

after every three convolutional layers instead of two in [40], which is carried out by

max-pooling (over a 2×2 window with stride 2) to halve the size of feature map. After

the stack of 12 convolutional layers and 4 max-pool layers, the feature maps are flat-

tened and concatenated into a vector with dimensionality 1600. Two fully-connected

17

layers (with 900 and 200 hidden units respectively) then follows. At last, the softmax355

layer is used to perform the 7357-way classification, including 7356 character classes

and one non-character class. The extra non-character class unit is to explicitly reject

non-characters, which are generated frequently in text line recognition [71]. Wang et

al. [32] have found that it is better to directly add an extra negative class other than

using the cascading CNN.360

5.2. Over-segmentation

Figure 5: Sliding window based over-segmentation.

Over-segmentation is to separate a text line image into primitive segments, each

being a character or a part of a character, such that characters can be formed by con-

catenating consecutive primitive segments. Connected component (CC) analysis has

been commonly used for over-segmentation in Chinese text recognition, but the split-365

ting of touched Chinese character is still critical to the performance of text recognition.

The conventional splitting method based on profile shape analysis [33] has been applied

successfully in many works [3, 12, 21], but it fails in dealing with complex touching

situations, as is shown in Fig. 6(a).

For improving the character separation rate, we adopt a two-stage CNN based over-370

segmentation method in this work:

(1) The text line image is initially over-segmented into primitive segments using the

visibility-based foreground analysis method proposed in [42]. The position be-

tween two adjacent primitive segments is a candidate segmentation point.

(2) A binary output CNN is used to classify sliding windows on CCs generated in step375

1 for detecting more candidate segmentation points. Detected segmentation points

close to each other are suppressed heuristically.

18

Our previous work on neural network based over-segmentation has demonstrated

effective in scene text recognition [72]. In this work, we improve the algorithm in two

aspects. Firstly, the visibility-based foreground analysis for over-segmentation [42]380

before sliding window detection is complementary to the sliding window method, and

can speed up the subsequent operation. Secondly, we use CNN as the classifier rather

than a traditional neural network, for higher detection rate of segmentation points. The

step 2 is elaborated in the following.

On the image of a CC, a fixed-width window slides from left to right with a stride385

of 0.1 times the CC height, as depicted in Fig. 5. The window image is classified by a

CNN to judge whether the center column is a segmentation point or not. The window

has the same height as the CC, and the width of 0.8 times the CC height. We observed

experimentally that the segmentation and recognition performance is insensitive to the

stride coefficient ranged from 0.04 to 0.1 and the window width ranged from 0.6 to 1390

times the CC height.

When training a CNN for segment point classification, a complex structure, such

as the one in [40], is prone to overfitting. Hence, we built a simple 4-layer network for

binary classification, as shown in Table 2. This network also uses extended directMaps

mentioned above as input. The CNN is trained using window image samples with the395

center positions labeled as segmentation point (positive) or not (negative). On a CC

image, after segmentation point detection by sliding window classification, we merge

adjacent candidate segmentation points which are close to each other, i.e., horizontal

distance less than a threshold, and retain the one with the smallest vertical projection.

The threshold is empirically set as the stroke width, which is estimated from the contour400

length and foreground pixel number in the text line image. Fig. 6 shows some examples

of over-segmentation, where we can see that the method of [42] is slightly better at

recall rate than that of [33], and our proposed method can separate touching characters

better than both the methods of [33] and [42].

5.3. Geometric context models405

Geometric context models have been successfully used in character string recogni-

tion [3, 35], and transcript mapping [57], where they play an important role to exclude

19

Table 2: CNN configuration for over-segmentation.

Type Configurations

input 9 × 32 × 32 extended directMaps

Convolution #maps: 50, k: 3 × 3, s:1, p:1, dropout: 0.0

MaxPooling Window: 2 × 2, s: 2

Convolution #maps: 100, k: 3 × 3, s:1, p:1, dropout: 0.1

MaxPooling Window: 2 × 2, s: 2

Full connection #units: 200

Softmax #units: 2

(a)

(b)

(c)

Figure 6: Examples of over-segmentation. (a) traditional method [33]. (b) Xu et al. [42]. (c) Our method.

non-characters and further improve the system performance. In this study, we adopt

the framework of geometric context model presented in [57], where geometric context

is divided into four statistical models (unary and binary class-dependent, unary and410

binary class-independent), abbreviated as ucg, bcg, uig, big, respectively.

The class-dependent geometric model can be seen as a complement to the charac-

ter classifier since the candidate patterns retain their original outlines without normal-

ization designed for character classification, which may exclude some useful context

Figure 7: The process of polynomial curve fitting.

20

information related to writing styles. Following [57], we reduce the number of char-415

acter geometry classes to six super-classes. The uig model is used to measure whether

a candidate pattern is a valid character or not, while the big model is used to measure

whether an over-segmentation gap is a valid between-character gap or not. They are

both two-class (binary classification) models.

For modeling the four geometric models, we used to extract geometric features420

firstly, and then use quadratic discriminant function (ucg, bcg) or support vector ma-

chine (uig, big) for classification, and finally transform the output scores to probabil-

ities by confidence transformation. In this work, we utilize CNN to perform feature

extraction and classification in a unified framework, then directly use the output of a

specific unit as the final score. Instead of simply resizing the character patterns as the425

input, we acquire the center curve of the text line by polynomial fitting which is shown

in Fig. 7, as it is necessary to keep the writing styles of text lines for geometric context

models. The degree of polynomial is set to be 0.075 times the connected component

number. After that, the top and bottom boundaries of each CC are adjusted according to

the center curve and the character height. In this case, we use the same CNN architec-430

ture as the one in [40] except for different units for output layers. In order to maintain

the writing styles, we only use the original CC image as input without directMaps.

6. Experimental results

We evaluated the performance of our handwritten Chinese text recognition sys-

tem on two databases: a large database of offline Chinese handwriting called CASIA-435

HWDB [54], and a small dataset from the ICDAR 2013 Chinese Handwriting Recog-

nition Competition [36], abbreviated as ICDAR-2013. The system was implemented

on a desktop computer of Intel Core i7-4790 3.60 GHz CPU, programming with C++

in Microsoft Visual Studio 2008. While for training NNLMs and CNN shape models,

we also used NVIDIA Titan X GPUs for acceleration.440

6.1. Database and baseline experimental setup

The CASIA-HWDB database contains both isolated characters and unconstrained

handwritten texts, which is divided into a training set of 816 writers data and a test

21

set of 204 writers data. The training set contains 3,118,447 isolated character samples

of 7,356 classes and 4,076 pages of handwritten pages (including 1,080,017 character445

samples). We tested our system on the test set containing 1,015 pages. The ICDAR-

2013 dataset was used as the test set at the ICDAR 2013 competition. It contains 300

test pages, which were written by 60 writers who did not contribute to the released

CASIA-HWDB database.

In the first round of experiments, to compare our results with the best ones with450

similar setup reported in [3, 12] fairly, we used the same character classifier and ge-

ometric context models trained on the CASIA-HWDB training set, the same over-

segmentation technique and the same text corpus for training LMs, as detailed in [3].

While in the second round of experiments, we replace the traditional character classi-

fier, over-segmentation and geometric context models with CNN based models. In the455

third round, we further switch to a large text corpus for training LMs.

The character classifier was trained on 4,198,494 isolated character images of 7,356

classes from both isolated characters and unconstrained texts. From a character image,

512-dimensional gradient direction features are extracted from gray-scale image using

the method of normalization cooperated gradient feature (NCGF) [73]. The 512D fea-460

ture vector is reduced to 160D by Fisher linear discriminant analysis (FLDA), and then

input into the Modified Quadratic Discriminant Function (MQDF) [74] classifier for

assigning candidate classes and confidence scores. We used 4/5 samples of the training

set for training the classifiers, and the remaining 1/5 samples for estimating the con-

fidence parameter (for transforming classifier output scores to posterior probabilities,465

details can be found in [3]).

To build the geometric context models [57], we extracted geometric features from

41,781 text lines of training text pages for estimating the parameters of the correspond-

ing four models (classifiers on geometric features) (ucg, uig, bcg, and big).

The generic language models were trained on a text corpus containing about 50470

million characters, which is the same as that in [3]. For comparison with the results

in [12], we also trained language models on the same large corpus, which contains the

above general corpus and the corpus from Sogou Labs, containing approximately 1.6

billion characters. In addition, we collected a development set containing 3.8 million

22

characters from the People’s Daily corpus [75] and ToRCH2009 corpus [76], for val-475

idating the trained language models. In the baseline setup, the maximum number of

concatenated segments, candidate number of character classification and beam width

in the refined beam search algorithm are set as 4, 20 and 10, respectively.

We report recognition performance in terms of two character-level metrics follow-

ing [77]: Correct Rate (CR) and Accurate Rate (AR):480

CR = (Nt −De − Ss)/Nt,

AR = (Nt −De − Ss − Ie)/Nt,
(15)

where Nt is the total number of characters in the transcript of test documents. The

numbers of substitution errors (Se), deletion errors (De) and insertion errors (Ie) are

calculated by aligning the recognition result string with the transcript by dynamic pro-

gramming. In addition to the AR and CR, we also measured the PPL of language

models on the development set.485

Since our experiments involve many context models, we give a list of the models

in Table 3.

Table 3: List of context models used in handwritten Chinese text recognition.

Abbreviation Referred model

cls character classifier (MQDF)

g union of all geometric models

cbi character bigram language model

cti character trigram language model

cfour character 4-gram language model

cfive character 5-gram language model

rnn character recurrent neural network language model

iwc interpolating word and class bigram

6.2. Comparison of language models

The first round of experiments is to compare the recognition performance using

language models trained on the general corpus and traditional over-segmentation in the490

system. For comparison, we first give the baseline results of our system using BLMs

23

of different orders on the CASIA-HWDB test set. Then, we evaluate and compare

the performance of FNNLMs and RNNLMs of various structures. Last, we report the

recognition performance on the ICDAR-2013 competition set with NNLMs.

6.2.1. Baseline performance495

The baseline recognition performance is obtained using BLMs trained on the gen-

eral corpus. To be consistent to the previous works [3, 12], we set the maximum number

of concatenated primitive segments as 4, the number of top candidate classes in clas-

sification as 20, and the beam width in the refined beam search algorithm as 10. The

bigram, trigram, 4-gram, and 5-gram BLMs were trained with the SRI Language Model500

(SRILM) toolkit (1.7.1) [78] with the default smoothing technique (Katz smoothing)

and entropy-based pruning. The thresholds for pruning the character bigram, trigram,

4-gram and 5-gram are set empirically as 5×10−8, 10−7, 10−7 and 10−7, respectively.

The parameters for the bigram and trigram are the same as those in [3].

The recognition results using different combinations of context models on the CASIA-505

HWDB test set are shown in Table 4. Naturally, our results using language models

cbi and cti are almost identical to those reported in [3] based on same settings of pa-

rameters. We achieved faster recognition than [3] due to the difference of computer

hardware and some details of implementation. The results of BLMs of different orders

show that while the improvement from cbi to cti is remarkable, the improvement from510

cti to higher order LMs cfour and cfive is only marginal. This can be attributed to the

data sparseness problem, which affects higher order LMs more evidently and cancels

off the benefit of higher order LMs.

Table 4: Recognition results using BLMs. ”Time” denotes the recognition time on all the test pages.

Combination AR (%) CR (%) Time (h) PPL

cls+cbi+g [3] 89.56 90.27 11.33 -

cls+cti+g [3] 90.20 90.80 11.54 -

cls+cbi+g 89.57 90.28 6.60 144.81

cls+cti+g 90.21 90.81 6.68 82.97

cls+cfour+g 90.23 90.82 6.72 73.72

cls+cfive+g 90.23 90.82 6.84 73.09

24

6.2.2. Effects of FNNLMs

We trained the FNNLMs of various structures with the CSLM toolkit (v3) [79],515

which provides full support for short-list and GPU implementation. We also used Intel

Math Kernel Library (MKL) to speed up the matrix operations of neural network in

testing. Each structure was trained multiple times with different initializations, and the

model with the lowest PPL on the development set was chosen as the final one.

We evaluated three structures of FNNLMs with projection size of 320, as shown in520

Table 5. The networks were all trained with batch size of 128 examples, weight decay

coefficient 10−7, and 20 iterations. The structures FNNLM-1 and FNNLM-2 have two

hidden layers, while FNNLM-3 has only one hidden layer. The short-list of FNNLM-1

covers all the characters in the training corpus, while FNNLM-2 and FNNLM-3 use a

smaller short-list. The learning rate lrate was empirically set initial values as in Table525

5, and decreased gradually during training by the following equation:

lrate = lrate0/(1 + λn) (16)

where lrate0 is the initial learning rate, n denotes the number of totally seen samples, λ

stands for the decay parameter and is 5×10−8 in this paper. As discussed in Section 4.3,

we also constructed HLMs by linearly interpolating FNNLMs with standard BLMs.

The weights of interpolation were computed by the compute-best-mix-tool from the530

SRILM toolkit, minimizing the perplexity on the development set. Corresponding to

the three structures of FNNLMs, we have three HLMs denoted as HFLM-1, HFLM-2,

and HFLM-3, respectively.

Table 5: Three structures of FNNLMs.

Structure Hidden layer size Short-list length Initial learning rate

FNNLM-1 1024 × 512 8330 0.06

FNNLM-2 1024 × 512 1023 0.06

FNNLM-3 512 1023 0.10

The recognition results using different combinations of context models are shown

in Table 6. Since it is quite time-consuming to test NNLM-1 and NNLM-2 of various535

25

orders, we only evaluated these two structures with 5-gram, which usually outperforms

4-gram and 3-gram. Comparing the results of FNNLMs with those of BLMs in Table

4, we can see that though FNNLMs yields lower PPL than the BLMs of same order,

their benefit on the recognition performance is not evident. The hybrid model, i.e.,

interpolation of FNNLM and BLM, can further reduce the PPL and evidently improve540

the text recognition accuracies. Specifically, the 5-gram HFLM-1 improves the AR

and CR to 90.69% and 91.24%, respectively, compared to 90.23% AR and 90.82% CR

of the 5-gram BLM. The FNNLM-2, with a short-list of size 1023, has much lower

complexity than the FNNLM-1, and yields slightly lower recognition performance,

which is comparable to that of 5-gram BLM. The corresponding hybrid model, 5-gram545

HFLM-2, yields lower performance than the 5-gram HFLM-1, but its time is greatly

reduced by 87.09% compared to HFLM-1, and the performance is superior to that of

BLM and FNNLM-2.

The FNNLM-3, with only one hidden layer and also short-list, has much lower

complexity than the FNNLM-1 and FNNLM-2. Consequently, its performance also de-550

generates in terms of both PPL and recognition accuracy. The AR and CR of FNNLM-3

are even lower than those of the BLM of same order. However, when combining with

BLMs, the resulting hybrid model HFLM-3 performs much better than the FNNLM-

3. The recognition performance of 5-gram HFLM-3 is even comparable to that of the

HFLM-2 of same order, which has two hidden layers and consumes much longer time555

than the HFLM-3. These results confirm that a hybrid LM by combining a simple-

structure FNNLM with a BLM is a good choice to balance the computational com-

plexity and the recognition performance.

6.2.3. Effects of RNNLMs

We trained the RNNLMs with the RNNLM Toolkit (0.4b) [65], which provides560

support for output factorization, RNNME training and efficient computation, although

without parallel computation. In order to make fair comparison with FNNLMs, we

also modified the toolkit to allow RNNLMs training with short-list. Since the RNNLM

Toolkit does not support parallel computation, we only trained the RNNLMs with

short-list or output factorization, while the training of RNNLMs without reduction is565

26

Table 6: Recognition results using FNNLMs and HLMs.

Language model Combination AR (%) CR (%) Time (h) PPL

FNNLM-1 cls+cfive+g 90.29 90.88 129.30 68.60

HFLM-1 cls+cfive+g 90.69 91.24 140.32 59.44

FNNLM-2 cls+cfive+g 90.21 90.82 17.78 71.64

HFLM-2 cls+cfive+g 90.51 91.09 18.11 63.03

FNNLM-3

cls+cbi+g 89.59 90.30 9.06 141.39

cls+cti+g 90.00 90.64 9.45 87.18

cls+cfour+g 90.04 90.66 10.04 79.63

cls+cfive+g 90.12 90.75 10.52 76.75

HFLM-3

cls+cbi+g 89.62 90.32 8.92 140.38

cls+cti+g 90.33 90.92 9.73 66.83

cls+cfour+g 90.39 90.97 10.21 66.83

cls+cfive+g 90.49 91.07 10.81 64.66

intractable for large vocabulary.

To investigate the effect of hidden layer number on RNNLMs, we trained two struc-

tures of RNNLMs with short-list size 1023, SRNNLM-1 and SRNNLM-2, which have

hidden layer size of 300 and 600, respectively. The other parameters are listed in Table

7. The learning rate is constantly halved once the log-likelihood improvement rate on570

the development set is lower than the minimum improvement ratio.

Table 7: Training parameters of RNNLMs.

BPTT step BPTT block Initial learning rate Weight decay Minimum improvement ratio

6 10 0.1 10−7 1.003

We compare the performance of RNNLMs and FNNLMs both with short-list, and

also evaluate the hybrid models by combining RNNLM with BLM. Since RNNLMs

are no longer limited to N-gram models, it is not worthy to interpolate with BLMs of

low order. Hence, we only combined RNNLMs with 5-gram BLMs. The two hybrid575

models corresponding to SRNNLM-1 and SRNNLM-2 are referred to as HSRLM-1

and HSRLM-2, respectively. The recognition results are shown in Table 8.

27

Table 8: Effects of short-list RNNLMs and HLMs.

Language type Combination AR (%) CR (%) Time (h) PPL

SRNNLM-1 cls+rnn+g 89.88 90.57 14.30 81.49

HSRLM-1 cls+rnn+g 90.43 91.02 14.42 61.44

SRNNLM-2 cls+rnn+g 90.30 90.94 28.74 65.19

HSRLM-2 cls+rnn+g 90.61 91.20 28.99 55.86

We mainly compare SRNNLM-1 and SRNNLM-2 with 5-gram FNNLM-2 and

FNNLM-3, which do not differ largely in complexity. From the characteristics of

the networks, we know that the order of parameter size of the four different mod-580

els is SRNNLM-2(6M)>FNNLM-2(5M)>FNNLM-3(4M)>SRNNLM-1(3M). Com-

pare the results of SRNNLMs in Table 8 and FNNLMs in Table 6, we can see that

the SRNNLM-1 yields the lowest performance among these four models. However,

once interpolated with the 5-gram BLM, the HSRLM-1 has lower PPL than the 5-

gram HFLM-2 and HFLM-3, and perform comparably with them in recognition. This585

indicates that SRNNLMs provide better complementarity to BLMs than FNNLMs,

such that simple-structure SRNNLMs generates competitive HLMs. Although the

SRNNLM-2 is slightly more complex than the FNNLM-2, it performs evidently bet-

ter than the 5-gram FNNLM-2. When interpolating with BLMs, the corresponding

HSRLM-2 also outperforms the HFLM-2 in both PPL and recognition accuracies. In590

fact, the HSRLM-2 even performs comparably with the HFLM-1 in Table 6, where

the 5-gram FNNLM-1 has roughly 9M parameters and is much more time consuming

than the HSRLM-2. Overall, these results demonstrate the superior performance of

RNNLMs over FNNLMs of similar parameter complexity. As for the time complex-

ity, the RNNLM is a little slower in our recognition system because of the frequent595

exchange of memory for hidden layers.

We also compared the performance of short-list RNNLM with output factorized

RNNLM (FRNNLM) and RNNME. As the vocabulary size V from the general corpus

is 8330, we set the word class number as 100, which is close to the suggested num-

ber
√|V | in [65], and . The RNNME model in our experiments has hidden layer size600

28

of 300 and uses 4-gram features3 with hash array size of 100M. The recognition re-

sults of factorized RNNLMs and RNNME models as well as their hybrid models are

shown in Table 9, where FRNNLM-1 and FRNNLM-2 denote the factorized RNNLMs

with hidden layer size of 300 and 600, respectively, HFRLM-1 and HFRLM-2 are the

corresponding HLMs linearly interpolated with 5-gram BLMs, HRMELM denotes the605

RNNME based HLM interpolated with a 5-gram BLM.

Table 9: Recognition results of factorized RNNLMs and RNNME models.

Language type Combination AR (%) CR (%) Time (h) PPL

FRNNLM-1 cls+rnn+g 89.57 90.26 15.95 87.67

HFRLM-1 cls+rnn+g 90.47 91.02 15.99 60.22

FRNNLM-2 cls+rnn+g 90.03 90.70 31.36 70.95

HFRLM-2 cls+rnn+g 90.61 91.16 31.61 55.30

RNNME cls+rnn+g 90.89 91.38 16.44 56.50

HRMELM cls+rnn+g 91.04 91.52 16.48 52.92

BLM cls+iwc+g+cca* [3] 90.75 91.39 18.78 -

cca: candidate character augmentation

First, compared to the results of short-list RNNLMs in Table 8, we can see that

the FRNNLM-1 performs even worse than the SRNNLM-1 with the same hidden layer

size of 300, since the network size is too small to capture the context for full vocab-

ulary. However, the hybrid model HFRLM-1 outperforms the HSRLM-1, as the full610

vocabulary (though factorized) output layer can offer lager potential for correct recog-

nition. When increasing the hidden layer size to 600, the FRNNLM-2 again performs

worse than the SRNNLM-2, while the hybrid models HFRLM-2 and HSRLM-2 per-

form comparably. In terms of computation efficiency, the short-list method turns out to

be more efficient than output factorization.615

Next, we compare the performance of factorized RNNLMs and RNNME in Table 9.

Since the factorized RNNLM with hidden layer size of 600 is still not sufficient for full

vocabulary on the general corpus, we introduced the RNNME into our system. It can

be seen that the RNNME alone can greatly improve the recognition performance, even

3According to [65], maximum entropy models with up to 4-gram features perform sufficiently.

29

outperform the hybrid model HFRLM-2, although its PPL is slightly higher than that620

of the HFLM-2. In fact, the RNNME alone has yielded performance (in terms of AR)

superior to the state-of-the-art result reported in [3], which was obtained using a candi-

date character augmentation (CCA) technique to promote the probability of including

the correct class of candidate character patterns on the segmentation-recognition lat-

tice, while we did not use CCA in this work. By interpolating 5-gram BLM, the hybrid625

model HRMELM yields the best results of 91.04% AR and 91.52% CR.

6.2.4. Performance on ICDAR-2013 dataset

Since the test set of ICDAR 2013 Chinese handwriting recognition competition is

now widely taken for benchmarking, we also report results on this dataset. We present

recognition results with three types of language models: 5-gram BLM, RNNME, and630

HRMELM. The language models and the text recognition settings are all the same as

those for recognition on the CASIA-HWDB test set. The recognition results are shown

in Table 10.

Table 10: Recognition results on ICDAR-2013 dataset.

Language model type Combination AR (%) CR (%) Time (h) PPL

BLM cls+iwc+g+cca [3] 89.28 90.22 - -

BLM cls+cfive+g 89.03 89.91 2.44 73.09

RNNME cls+rnn+g 89.69 90.41 5.86 56.50

HRMELM cls+rnn+g 89.86 90.58 5.84 52.92

Table 10 also gives the results of interpolated word class (iwc) bigram with CCA.

Due to the effect of CCA, the iwc bigram even outperforms the character-based 5-635

gram BLM. The comparison of 5-gram BLM, RNNME and HRMELM show similar

tendency as in Table 9: the RNNME outperforms the 5-gram BLM, and the HRMELM

yields the best performance. Compared to the state-of-the-art result of the method in

[3], the error rate is reduced by 5.41% relative with only the help of character level

language models.640

30

6.3. Effects of CNN shape models

In the second round of experiments, we replace the traditional character classifier,

over-segmentation, and geometric context models with CNN shape models, which are

all trained with Caffe [80]. We first introduce the training details of the three models.

Then we evaluate the performance of these models and compare with traditional ones.645

For both the character classifier and geometric models, we directly use the softmax

output as the corresponding score without confidence transformation.

6.3.1. CNN character classifier

The CNN character classifier was initialized using Xavier initialization [81]. The

training is carried out by minimizing the multi-class negative log-likelihood loss using650

mini-batch gradient descent with momentum. The batch size is set to be 1024, while

the momentum is 0.9. The learning rate is initially set to 0.01, and then decreased by

×0.5 when the cost or accuracy on the training data stops improving. The training can

be finished after about 90 epochs.

Our experiments showed that although training data augmentation does not improve655

the character recognition accuracy, it can improve the string recognition performance.

We adopted the augmentation techniques introduced in [82], where geometric trans-

form, local resizing and elastic distortion are used. We expanded the training set by

two times of the original samples, i.e., we totally had 12,595,460 character samples.

On the other hand, we also generated 5,160,425 non-character samples from the train-660

ing text line samples. Although there exits a severe class imbalance problem, we found

no obvious performance deterioration in the system performance. Hence, we did not

utilize any technique to deal with this problem. The CNN character classifier achieved

92.17% accuracy on the character samples segmented from the test text set of CASIA-

HWDB. Compared with the accuracy 83.78% in [3], the CNN classifier is obviously665

much stronger than MQDF.

6.3.2. CNN based over-segmentation

For over-segmentation, we trained the sliding window classifier (CNN) with the

training data of CASIA-HWDB database. Since all the text lines in the database have

31

been segmented and annotated at character level, it is convenient to get the ground-670

truths of segmentation points. For generating training samples, we first slide the win-

dow on CCs in the text lines. When the distance between the center position of the

window and the boundary of a character is smaller than 0.1 times the CC height or

larger than 0.12 times the CC height, the window is regarded as a positive or negative

sample, respectively. Otherwise, the window is regarded ambiguous and not used for675

training.

The initialization and training procedure are similar to those of the CNN character

classifier. There are usually much more negative samples (1,870,534) than positive

samples (123,862). To overcome the problem of sample class imbalance and improve

the recall as much as possible, we decreased the negative sample loss by ×0.005. The680

training can be finished after about 100 epochs.

For evaluating over-segmentation on text lines, we measured the precision and re-

call rate of segmentation point detection. When the window classifier outputs positive

label, if the horizontal distance between the window center and a character boundary

is less than 2 times the stroke width of the text line, the window center is regarded as685

a true positive of segmentation point, otherwise is a false positive. The segmentation

precision and recall rates on the CASIA-HWDB test set are shown in Table 11. We can

see that the method of [42] can achieve higher recall than that of [33] at a little loss of

precision. When using sliding window classification, the recall rate is further improved

compared to both the methods of [33] and [42]. Our CNN based method, by combin-690

ing the method in [42] with siding window classification, can achieve the highest recall

rate, which offers higher potential of correct character segmentation and recognition.

In the recognition system, as the CNN based over-segmentation algorithm generates

more CCs, the maximum number of concatenated segments is set to be 7 instead of 4.

6.3.3. CNN based geometric context models695

Since the text lines in the database HWDB2.0-2.2 were annotated at character level,

it is convenient to get the ground-truths for the four types of geometry samples (ucg,

uig, bcg, big). We have got 1,081,153 (ucg), 7,498,977 (uig), 1,221,326 (bcg) and

1,331,428 (big) samples, respectively. The initialization and training procedure are

32

Table 11: Over-segmentation results on CASIA-HWDB test set.

Model type Precision (%) Recall (%)

[33] 74.32 98.23

[42] 68.07 99.22

Only sliding window 63.75 99.39

Our method 64.23 99.58

similar to the CNN character classifier as well.700

6.3.4. Evaluation of CNN shape models

We integrated the three CNN-based models above into the recognition system to

validate the improvement of performance. Based on the former comparison of different

LMs, we only used one best NNLM, the HRMELM. The recognition results on the

CASIA-HWDB database and the ICDAR-2013 dataset are listed in Table 12.705

Table 12: Recognition results using different type of models on two datasets.

CASIA-HWDB ICDAR-2013

Shape model LM Combination AR (%) CR (%) Time (h) AR (%) CR (%) Time (h)

traditional

BLM cls+iwc+g+cca [3] 90.75 91.39 18.78 89.28 90.22 -

BLM cls+cti+g+lma* [12] 91.73 92.37 10.17 - - -

BLM cls+cfive+g 90.23 90.82 6.84 89.03 89.91 2.44

HRMELM cls+rnn+g 91.04 91.52 16.48 89.86 90.58 5.84

CNN
BLM cls+cfive+g 95.05 95.15 8.67 94.51 94.64 2.96

HRMELM cls+rnn+g 95.55 95.63 16.83 95.04 95.15 6.68

lma: language model adaptation

From Table 12, the comparison between the traditional models and CNN based

models in this work shows the superiority of the CNN. The Character Error Rate

(CER), which equals 1 − AR, is reduced by almost 50% compared to the traditional

models on both two datasets. Furthermore, text recognition based on CNN models

consumes only a little more computation time than the traditional ones, because of the710

highly efficient implementation of our algorithm on GPU. The comparison between

33

different LMs again validates the superiority of the HRMELM. Combined with CNN

shape models, the HRMELM yields the best performance on both two datasets, i.e.,

95.55% AR and 95.63% CR on the CASIA-HWDB test set, 95.04% AR and 95.15%

CR on the ICDAR-2013 dataset. These were resulted without using CCA (candidate715

character augmentation) or LMA (language model adaptation, based on a large corpus

classified into different domains).

For references, the ICDAR-2013 competition paper [36] reported best results of

89.28% AR and 90.22% CR using the method of [3]. The work [13] implemented

the LSTM-RNN framework (initially introduced in [83]) for Chinese handwritten text720

recognition and reported promising recognition performance on the ICDAR-2013 dataset:

89.40% AR. This is inferior to the performance of the proposed method using HRMELM

with either traditional models or CNN shape models. A recent work [32], which adopts

a similar framework to ours, achieves 95.21% AR and 96.28% CR on the CASIA-

HWDB test set, 94.02% AR and 95.53% CR on the ICDAR-2013 dataset. Our method725

has much lower CER, which is supposed to be a more accurate metric, although it is a

little worse than [32] in CR. Moreover, it should be mentioned that both [13] and [32]

removed some special tokens when tested on the ICDAR-2013 dataset.

6.4. Results with LMs on large corpus

To better model linguistic contexts, we extended our experiments using a large730

corpus containing 1.6 billion characters, which was used in a previous work of language

model adaptation [33]. On the large corpus, we trained a 5-gram BLM with the same

Katz smoothing, and also set the threshold of pruning as 10−7. Since it is too time

consuming to train NNLMs on the large corpus, we simply used the NNLMs trained

on the general corpus containing 50 millions of characters, and combined them with735

BLMs trained on the large corpus. Particularly, we used the RNNME model trained on

the general corpus and combined it with the 5-gram BLM trained on the large corpus

to give a hybrid model HRMELM. The recognition results on two datasets are shown

in Table 13.

From Table 13, we have three observations on the results on CASIA-HWDB. First,740

unlike the performance of higher order LMs trained on the smaller general corpus, the

34

Table 13: Recognition results on two datasets using LMs on large corpus.

CASIA-HWDB ICDAR-2013

LM type Shape model Combination AR (%) CR (%) Time (h) PPL AR (%) CR (%) Time (h) PPL

BLM

traditional cls+cti+g+lma[12] 91.73 92.37 10.17 - - - - -

traditional cls+cti+g[12] 90.66 91.28 9.83 - - - - -

traditional cls+cfive+g 90.79 91.41 6.88 65.21 91.48 92.17 2.44 65.21

CNN cls+cfive+g 95.36 95.46 8.91 65.21 96.18 96.31 2.93 65.21

HRMELM
traditional cls+rnn+g 91.64 92.11 16.57 46.25 91.59 92.23 5.93 46.25

CNN cls+rnn+g 95.88 95.95 16.83 46.25 96.20 96.32 5.93 46.25

5-gram BLM obviously outperforms the 3-gram cti when trained on large corpus, since

the large corpus alleviates the data sparseness problem. Second, although the perfor-

mance of the 5-gram BLM is improved by the large corpus, the RNNME still benefits

the performance significantly in the HRMELM: it brings 9.23% error rate reduction745

compared to the 5-gram BLM. Third, CNN shape models again improve the system

performance in the context of large corpus, because they not only provide larger poten-

tial of containing correct candidate character patterns, but also offer stronger classifica-

tion capabilities. Compared to the previous state-of-the-art baseline [12] using lma on

large corpus, our method using HRMELM and CNN shape models improves the AR750

by 4.15% absolutely.

It is noteworthy in Table 13 that when using the large corpus for training LMs,

the HRMELM shows no obvious superiority to the BLM on the ICDAR-2013 dataset.

We found that the transcripts of the ICDAR-2013 dataset are mostly included in the

corpus from Sogou Labs, thus, the BLM can fit the test data very well and yields755

high recognition accuracies. To further investigate into this problem, we deleted the

sentences which appear in the ICDAR-2013 corpus from the large corpus. However, as

the topics of this corpus are very typical and concentrated, on the ICDAR-2013 dataset,

we can achieve 96.16% AR and 96.29% CR with the 5-gram back-off LM trained on

the processed corpus as well. This alerts researchers to pay attention to the overfitting760

of language model to the transcripts of test text images. On the other hand, neural

35

network LMs generalize well to unseen texts.

6.5. Performance analysis

The experimental results show that there is still a gap between the accuracy and per-

fect recognition despite the improvements of NNLMs and CNN based models. Thus,765

we analyze the upper bound of performance of our recognition system in the following,

and then show some real examples of text line recognition.

6.5.1. Upper bound of performance

For a quantitative measure of upper bound of recognition performance, we consider

the Lattice Error Rate (LER) to evaluate the quality of the segmentation-recognition770

candidate lattice. The LER is a lower bound of CER. It is defined as the total number of

lattice errors divided by the total number of characters in the transcript. The calculation

of LER is specified as follows.

For a text line (character string) S with transcript y1:N = y1...yN , we denote the

lattice of S by G. The lattice errors are evaluated by the distance between y 1:N and G,775

which is defined as the minimum edit distance between y1:N and any label sequence Y

in G:

Dist(y1:N ,G) = min
Y ∈G

Dist(y1:N , Y). (17)

Let y1:i, i ≤ N , be a partial label sequence. Let j ∈ {0, ..., T} be the candidate seg-

mentation points of text line, where 0 is the start and T is the end, and G 0:j be the

partial lattice between segmentation points 0 and j. Then the distance D(i, j) between780

y1:i and G0:j can be deduced recursively by the following dynamic programming pro-

cedure:

(1) Initialization

D(0, 0) = 0,

D(i, 0) = i, for 1 ≤ i ≤ N,

D(0, j) = min
k:(k,j)∈G

D(0, k) + 1, for 1 ≤ i ≤ T

(18)

36

(2) Recursion. For 1 ≤ i ≤ N, 1 ≤ j ≤ T ,

D(i, j) = min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
k,Y(k,j) :(k,j)∈G

D(i− 1, k) + 1− δ(yi, Y(k,j)),

D(i − 1, j) + 1,

min
k:(k,j)∈G

D(i, k) + 1,

(19)

(3) Termination785

Dist(y1:N ,G) = D(N,T), (20)

where (k, j) with k < j denotes a candidate character pattern between candidate seg-

mentation points k and j, and Y(k,j) denotes a candidate class of (k, j).

We can see that the LER is affected by over-segmentation and candidate character

classification, which generates character segmentation and assigns character classes.

Combined with the traditional and CNN shape models respectively, we compare the790

LERs of these two models. We show the Lattice Accuracy Rate (LAR) as 1 − LER in

Table 14. It is shown that the CNN shape models, specifically the character classifier

and over-segmentation algorithm, significantly improve the LAR (reduces the LER) on

both two datasets. According to [3], the baseline MQDF classifier gives top-20 cumu-

lative accuracy 98.24% on the characters in the test text lines of CASIA-HWDB, while795

our CNN classifier achieves 99.75% top-20 cumulative accuracy. However, the gap be-

tween the actual AR (usually less than 96% in our experiments) and the LAR implies

that there is still room for improvement in exploiting contexts on the segmentation-

recognition candidate lattice.

Table 14: LARs on the two datasets.

Shape model
CASIA-HWDB ICDAR-2013

LAR(%) LAR(%)

traditional 96.65 96.16

CNN 99.20 99.27

37

6.5.2. Recognition examples800

We show some examples of text line recognition in Fig. 8, which reveal several

factors causing recognition errors. We consider two typical settings: the 5-gram BLM

combined with traditional models, the best language model HRMELM combined with

CNN shape models. The four examples show the effects of both language models and

context evaluation models. The recognition error in Fig. 8(a) was also shown in [12],805

and was not corrected by language model adaptation. It is corrected by the HRMELM

which captures long-span context. In (b) the error is corrected by the CNN based char-

acter classifier and geometric models for better modeling the contexts. In (c), the error

is corrected by CNN based over-segmentation, while the tradition over-segmentation

method could not separate the two touched characters. In (d), the error is irreducible810

due to the inaccuracy of candidate segmentation-recognition path evaluation.

 ,

(a)

(b) (c) (d)

 ,

 ,

Figure 8: Recognition of four text lines. For each example, the first row is the text line image, second row is

the result using 5-gram BLM and traditional models, third row is the result using HRMELM and CNN shape

models, fourth row is the transcript (ground-truth).

7. Conclusion

In this paper, we evaluated the effects of two types of character-level NNLMs,

namely, FNNLMs and RNNLMs, with the aim of improving Chinese handwritten text

recognition. Both FNNLMs and RNNLMs are also combined with BLMs to construct815

38

HLMs. We evaluated in a text line recognition system with the same character over-

segmentation and classification techniques as in a state-of-the-art system, and com-

pared various LMs trained on a small text corpus as used before. Experimental results

on the Chinese handwriting database CASIA-HWDB show that while pure NNLMs do

not improve the recognition performance substantially, the hybrid LMs by combining820

NNLMs and BLMs lead to significant improvements. RNNLMs outperform FNNLMs

because they can model long-distance contexts. The hybrid model HRMELM (com-

bining the RNNME and BLM) yields the best performance. Replacing traditional char-

acter classifier, over-segmentation and geometric context model with CNN based mod-

els and training LMs with a large corpus, we achieved new benchmarks on both the825

CASIA-HWDB database and the ICDAR-2013 competition dataset.

The analysis of recognition performance upper bound (LAR) and examples of

recognition errors show that there is still large room for improvements, mainly lying

in candidate segmentation-recognition path evaluation exploiting contexts. In our fu-

ture work, we will consider the more powerful LSTM-RNN language model, which is830

even more computationally demanding than the RNNLMs. We will also try word level

LMs, as words are more semantically meaningful than pure characters, though word

level LMs are hard to manage in Chinese documents.

Acknowledgements

We would like to thank Zhuo Chen and Xin He for the help of implementing CNN835

based over-segmentation, and Xiang-Dong Zhou for sharing the idea of lattice error

rate. This work has been supported by the National Natural Science Foundation of

China (NSFC) grants 61305005, 61273269, 61573355, and 61411136002.

References

[1] R.-W. Dai, C.-L. Liu, B.-H. Xiao, Chinese character recognition: History, status840

and prospects, Frontiers of Computer Science in China 1 (2) (2007) 126–136.

[2] H. Fujisawa, Forty years of research in character and document recognition—an

industrial perspective, Pattern Recognition 41 (8) (2008) 2435–2446.

39

[3] Q.-F. Wang, F. Yin, C.-L. Liu, Handwritten Chinese text recognition by integrat-

ing multiple contexts, IEEE Trans. Pattern Analysis and Machine Intelligence845

34 (8) (2012) 1469–1481.

[4] S. Katz, Estimation of probabilities from sparse data for the language model com-

ponent of a speech recognizer, IEEE Trans. Acoustics, Speech and Signal Pro-

cessing 35 (3) (1987) 400–401.

[5] S. F. Chen, J. Goodman, An empirical study of smoothing techniques for language850

modeling, in: Proc. 34th Annual Meeting on Association for Computational Lin-

guistics, 1996, pp. 310–318.

[6] U.-V. Marti, H. Bunke, Using a statistical language model to improve the perfor-

mance of an HMM-based cursive handwriting recognition system, International

Journal of Pattern Recognition and Artificial Intelligence 15 (1) (2001) 65–90.855

[7] H. Bunke, S. Bengio, A. Vinciarelli, Offline recognition of unconstrained hand-

written texts using HMMs and statistical language models, IEEE Trans. Pattern

Analysis and Machine Intelligence 26 (6) (2004) 709–720.

[8] S. Espana-Boquera, M. J. Castro-Bleda, J. Gorbe-Moya, F. Zamora-Martinez,

Improving offline handwritten text recognition with hybrid HMM/ANN models,860

IEEE Trans. Pattern Analysis and Machine Intelligence 33 (4) (2011) 767–779.

[9] X.-D. Zhou, D.-H. Wang, F. Tian, C.-L. Liu, M. Nakagawa, Handwritten Chi-

nese/Japanese text recognition using semi-Markov conditional random fields,

IEEE Trans. Pattern Analysis and Machine Intelligence 35 (10) (2013) 2413–

2426.865

[10] A. Bissacco, M. Cummins, Y. Netzer, H. Neven, PhotoOCR: Reading text in

uncontrolled conditions, in: Proc. ICCV, 2013, pp. 785–792.

[11] D.-H. Wang, C.-L. Liu, X.-D. Zhou, An approach for real-time recognition of

online Chinese handwritten sentences, Pattern Recognition 45 (10) (2012) 3661–

3675.870

40

[12] Q.-F. Wang, F. Yin, C.-L. Liu, Unsupervised language model adaptation for hand-

written Chinese text recognition, Pattern Recognition 47 (3) (2014) 1202–1216.

[13] R. Messina, J. Louradour, Segmentation-free handwritten Chinese text recogni-

tion with lstm-rnn, in: Proc. 13th Int. Conf. on Document Analysis and Recogni-

tion, 2015, pp. 171–175.875

[14] B. Carpenter, Scaling high-order character language models to gigabytes, in:

Proc. the Workshop on Software, 2005, pp. 86–99.

[15] Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A neural probabilistic language

model, Journal of Machine Learning Research 3 (2) (2003) 1137–1155.

[16] H. Schwenk, Continuous space language models, Computer Speech & Language880

21 (3) (2007) 492–518.

[17] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, S. Khudanpur, Recurrent neural

network based language model., in: Proc. INTERSPEECH, 2010, pp. 1045–1048.

[18] H. Schwenk, Continuous space translation models for phrase-based statistical ma-

chine translation., in: Proc. COLING, 2012, pp. 1071–1080.885

[19] H. Schwenk, A. Rousseau, M. Attik, Large, pruned or continuous space language

models on a gpu for statistical machine translation, in: Proc. NAACL-HLT 2012

Workshop: Will We Ever Really Replace the N-gram Model? On the Future of

Language Modeling for HLT, 2012, pp. 11–19.

[20] F. Zamora-Martı́nez, V. Frinken, S. España-Boquera, M. Castro-Bleda, A. Fis-890

cher, H. Bunke, Neural network language models for off-line handwriting recog-

nition, Pattern Recognition 47 (4) (2014) 1642–1652.

[21] Y.-C. Wu, F. Yin, C.-L. Liu, Evaluation of neural network language models in

handwritten Chinese text recognition, in: Proc. 13th Int. Conf. on Document

Analysis and Recognition, 2015, pp. 166–170.895

41

[22] A. Mnih, G. Hinton, Three new graphical models for statistical language mod-

elling, in: Proc. 24th International Conference on Machine Learning, 2007, pp.

641–648.

[23] T. Morioka, T. Iwata, T. Hori, T. Kobayashi, Multiscale recurrent neural network

based language model, in: Proc. INTERSPEECH, 2015, pp. 2366–2370.900

[24] K. Irie, R. Schlüter, H. Ney, Bag-of-words input for long history representation in

neural network-based language models for speech recognition, in: Proc. INTER-

SPEECH, 2015, pp. 2371–2375.

[25] A. Mnih, G. E. Hinton, A scalable hierarchical distributed language model, in:

Proc. Advances in neural information processing systems, 2009, pp. 1081–1088.905

[26] F. Morin, Y. Bengio, Hierarchical probabilistic neural network language model,

in: Proc. AISTATS, Vol. 5, 2005, pp. 246–252.

[27] A. Mnih, Y. W. Teh, A fast and simple algorithm for training neural probabilistic

language models, in: Proc. 29th International Conference on Machine Learning,

2012, pp. 1751–1758.910

[28] T. Mikolov, S. Kombrink, L. Burget, J. H. Černockỳ, S. Khudanpur, Extensions

of recurrent neural network language model, in: Proc. ICASSP, 2011, pp. 5528–

5531.

[29] Y. Bengio, J.-S. Senecal, Adaptive importance sampling to accelerate training of a

neural probabilistic language model, IEEE Trans. Neural Networks 19 (4) (2008)915

713–722.

[30] T. Mikolov, A. Deoras, D. Povey, L. Burget, J. Černockỳ, Strategies for training

large scale neural network language models, in: Proc. ASRU, 2011, pp. 196–201.

[31] S. Kombrink, T. Mikolov, M. Karafiát, L. Burget, Recurrent neural network based

language modeling in meeting recognition., in: INTERSPEECH, 2011, pp. 2877–920

2880.

42

[32] S. Wang, L. Chen, L. Xu, W. Fan, J. Sun, S. Naoi, Deep knowledge training

and heterogeneous CNN for handwritten Chinese text recognition, in: Proc. 15th

ICFHR, 2016, pp. 84–89.

[33] C.-L. Liu, M. Koga, H. Fujisawa, Lexicon-driven segmentation and recognition of925

handwritten character strings for Japanese address reading, IEEE Trans. Pattern

Analysis and Machine Intelligence 24 (11) (2002) 1425–1437.

[34] H. Lee, B. Verma, Binary segmentation algorithm for English cursive handwriting

recognition, Pattern Recognition 45 (4) (2012) 1306–1317.

[35] X.-D. Zhou, J.-L. Yu, C.-L. Liu, T. Nagasaki, K. Marukawa, Online handwritten930

Japanese character string recognition incorporating geometric context, in: Proc.

9th Int. Conf. on Document Analysis and Recognition, 2007, pp. 48–52.

[36] F. Yin, Q.-F. Wang, X.-Y. Zhang, C.-L. Liu, ICDAR 2013 Chinese handwriting

recognition competition, in: Proc. 12th Int. Conf. on Document Analysis and

Recognition, 2013, pp. 1464–1470.935

[37] D. Cireşan, U. Meier, Multi-column deep neural networks for offline handwritten

Chinese character classification, in: Proc. IJCNN, 2015, pp. 1–6.

[38] C. Wu, W. Fan, Y. He, J. Sun, S. Naoi, Handwritten character recognition by al-

ternately trained relaxation convolutional neural network, in: Proc. ICFHR, 2014,

pp. 291–296.940

[39] Z. Zhong, L. Jin, Z. Xie, High performance offline handwritten Chinese character

recognition using GoogLeNet and directional feature maps, in: Proc. 13th Int.

Conf. on Document Analysis and Recognition, 2015, pp. 846–850.

[40] X.-Y. Zhang, Y. Bengio, C.-L. Liu, Online and offline handwritten chinese charac-

ter recognition: A comprehensive study and new benchmark, Pattern Recognition945

61 (2017) 348–360.

[41] N. Li, X. Gao, L. Jin, Curved segmentation path generation for unconstrained

handwritten Chinese text lines, in: Proc. APCCAS, 2008, pp. 501–505.

43

[42] L. Xu, F. Yin, Q.-F. Wang, C.-L. Liu, Touching character separation in Chinese

handwriting using visibility-based foreground analysis, in: Proc. 11th Int. Conf.950

on Document Analysis and Recognition, 2011, pp. 859–863.

[43] J. H. Bae, K. C. Jung, J. W. Kim, H. J. Kim, Segmentation of touching characters

using an MLP, Pattern Recognition Letters 19 (8) (1998) 701–709.

[44] L. Xu, F. Yin, Q.-F. Wang, C.-L. Liu, An over-segmentation method for single-

touching chinese handwriting with learning-based filtering, International Journal955

on Document Analysis and Recognition 17 (1) (2014) 91–104.

[45] M. Nakagawa, Z. Bilan, M. Onuma, A model of on-line handwritten Japanese

text recognition free from line direction and writing format constraints, IEICE

transactions on information and systems 88 (8) (2005) 1815–1822.

[46] Y.-C. Wu, F. Yin, C.-L. Liu, Evaluation of geometric context models for hand-960

written numeral string recognition, in: Proc. ICFHR, 2014, pp. 193–198.

[47] T. Mikolov, A. Deoras, S. Kombrink, L. Burget, J. Cernockỳ, Empirical evalu-

ation and combination of advanced language modeling techniques., in: INTER-

SPEECH, 2011, pp. 605–608.

[48] M. Sundermeyer, I. Oparin, J.-L. Gauvain, B. Freiberg, R. Schluter, H. Ney, Com-965

parison of feedforward and recurrent neural network language models, in: Proc.

ICASSP, 2013, pp. 8430–8434.

[49] M. Sundermeyer, H. Ney, R. Schluter, From feedforward to recurrent lstm neural

networks for language modeling, IEEE/ACM Trans. Audio, Speech, and Lan-

guage Processing 23 (3) (2015) 517–529.970

[50] E. Arisoy, T. N. Sainath, B. Kingsbury, B. Ramabhadran, Deep neural network

language models, in: Proc. NAACL-HLT 2012 Workshop: Will We Ever Re-

ally Replace the N-gram Model? On the Future of Language Modeling for HLT,

Association for Computational Linguistics, 2012, pp. 20–28.

44

[51] L. Hai Son, A. Allauzen, F. Yvon, Measuring the influence of long range de-975

pendencies with neural network language models, in: Proc. NAACL-HLT 2012

Workshop: Will We Ever Really Replace the N-gram Model? On the Future of

Language Modeling for HLT, Association for Computational Linguistics, 2012,

pp. 1–10.

[52] N. Li, J. Chen, H. Cao, B. Zhang, P. Natarajan, Applications of recurrent neural980

network language model in offline handwriting recognition and word spotting, in:

Proc. ICFHR, 2014, pp. 134–139.

[53] N. Li, J. Chen, H. Cao, B. Zhang, P. Natarajan, Applications of recurrent neural

network language model in offline handwriting recognition and word spotting, in:

Proc. ICFHR, 2014, pp. 134–139.985

[54] C.-L. Liu, F. Yin, D.-H. Wang, Q.-F. Wang, CASIA online and offline Chinese

handwriting Databases, in: Proc. 11th Int. Conf. on Document Analysis and

Recognition, 2011, pp. 37–41.

[55] C.-L. Liu, Handwritten chinese character recognition: effects of shape normal-

ization and feature extraction, in: Arabic and Chinese handwriting recognition,990

2008, pp. 104–128.

[56] C. Liu, H. Fujisawa, Classification and learning in character recognition: ad-

vances and remaining problems, Machine Learning in Document Analysis and

Recognition, S. Marinai and H. Fujisawa, eds 139–161.

[57] F. Yin, Q.-F. Wang, C.-L. Liu, Transcript mapping for handwritten Chinese docu-995

ments by integrating character recognition model and geometric context, Pattern

Recognition 46 (10) (2013) 2807–2818.

[58] C. M. Bishop, Pattern recognition and machine learning (2006) 225–284.

[59] J. Fürnkranz, A study using n-gram features for text categorization, Austrian Re-

search Institute for Artifical Intelligence 3 (1998) 1–10.1000

45

[60] T. Joshua, J. Goodman, A bit of progress in language modeling extended version,

Machine Learning and Applied Statistics Group Microsoft Research (2001) 1–72.

[61] J. Goodman, Classes for fast maximum entropy training, in: Proc. ICASSP, IEEE,

2001, pp. 561–564.

[62] G. Zweig, K. Makarychev, Speed regularization and optimality in word classing,1005

in: Proc. ICASSP, 2013, pp. 8237–8241.

[63] P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D. Pietra, J. C. Lai, Class-based

n-gram models of natural language, Computational linguistics 18 (4) (1992) 467–

479.

[64] R. Kneser, H. Ney, Improved clustering techniques for class-based statistical lan-1010

guage modelling., in: Proc. Eurospeech, 1993, pp. 973–76.

[65] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, J. Cernocky, Rnnlm-recurrent

neural network language modeling toolkit, in: Proc. ASRU, 2011, pp. 196–201.

[66] G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with

neural networks, Science 313 (5786) (2006) 504–507.1015

[67] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–

444.

[68] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to

document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[69] Z. Zhong, L. Jin, Z. Xie, High performance offline handwritten chinese character1020

recognition using googlenet and directional feature maps, in: Proc. 13th Int. Conf.

on Document Analysis and Recognition, 2015, pp. 846–850.

[70] C.-L. Liu, K. Marukawa, Pseudo two-dimensional shape normalization methods

for handwritten chinese character recognition, Pattern Recognition 38 (12) (2005)

2242–2255.1025

46

[71] C.-L. Liu, H. Sako, H. Fujisawa, Effects of classifier structures and training

regimes on integrated segmentation and recognition of handwritten numeral

strings, IEEE Trans. Pattern Analysis and Machine Intelligence 26 (11) (2004)

1395–1407.

[72] X. He, Y.-C. Wu, K. Chen, F. Yin, C.-L. Liu, Neural network based over-1030

segmentation for scene text recognition, in: Proc. ACPR, 2015, pp. 715–719.

[73] C.-L. Liu, Normalization-cooperated gradient feature extraction for handwritten

character recognition, IEEE Trans. Pattern Analysis and Machine Intelligence

29 (8) (2007) 1465–1469.

[74] F. Kimura, K. Takashina, S. Tsuruoka, Y. Miyake, Modified quadratic discrimi-1035

nant functions and the application to Chinese character recognition, IEEE Trans.

Pattern Analysis and Machine Intelligence 9 (1) (1987) 149–153.

[75] S. Yu, H. Duan, B. Swen, B.-B. Chang, Specification for corpus processing at

Peking University: Word segmentation, pos tagging and phonetic notation., Jour-

nal of Chinese Language and Computing 13 (2).1040

[76] http://www.bfsu-corpus.org/channels/corpus.

[77] T.-H. Su, T.-W. Zhang, D.-J. Guan, H.-J. Huang, Off-line recognition of realistic

Chinese handwriting using segmentation-free strategy, Pattern Recognition 42 (1)

(2009) 167 – 182.

[78] A. Stolcke, Srilm - an extensible language modeling toolkit, in: Proc. INTER-1045

SPEECH, 2002, pp. 901–904.

[79] H. Schwenk, CSLM - A modular open-source continuous space language model-

ing toolkit., in: Proc. INTERSPEECH, 2013, pp. 1198–1202.

[80] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-

rama, T. Darrell, Caffe: Convolutional architecture for fast feature embedding,1050

arXiv preprint arXiv:1408.5093.

47

http://www.bfsu-corpus.org/channels/corpus

[81] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward

neural networks., in: Proc. Aistats, Vol. 9, pp. 249–256.

[82] M.-K. Zhou, X.-Y. Zhang, F. Yin, C.-L. Liu, Discriminative quadratic feature

learning for handwritten chinese character recognition, Pattern Recognition 491055

(2016) 7–18.

[83] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, J. Schmidhuber,

A novel connectionist system for unconstrained handwriting recognition, IEEE

Trans. Pattern Analysis and Machine Intelligence 31 (5) (2009) 855–868.

48

