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Abstract-Text localization in born-digital images is usually 
performed using methods designed for scene text images. Based 
on the observation that text strokes in born-digital images mostly 
have complete contours and the pixels on the contours have 
high contrast compared with the adjacent non-text pixels, we 
propose a method to extract candidate text components using 
local contrast. First, the image is segmented into smooth and 
non-smooth regions. After removing non-text smooth regions, the 
remaining smooth regions are merged with non-smooth regions 
to form a candidate text image, which is binarized into high-value 
and low-value connected components (CCs). T he CCs undergo 
CC filtering, line grouping and line classification to give the 
text localization result. Experimental results on the born-digital 
dataset of ICDAR2013 robust reading competition demonstrate 
the efficiency and superiority of the proposed method. 

Index Terms-Text localization, image segmentation, local 
contrast, connected components grouping. 

I. INTRODUCTION 

The text elements embedded in born-digital images, preva­
lent on the Web, carry salient semantic information such as 
advertisements and security-related information. Born-digital 
images and scene text images together carry a substantial pro­
portion of information on the Web. Antonacopoulos et al. [1] 
showed that a large fraction (76%) of text embedded in images 
cannot be found anywhere else in the web pages. Therefore, 
extracting text information from born-digital images enhances 
the semantic relevance of web content for indexing and 
retrieval. Usually, a text information extraction system consists 
of three steps: text localization, text segmentation and text 
recognition. Text localization is critical to the overall system 
performance and is suffering from variable image background, 
text color and layout. 

Many methods have been proposed for text localization in 
images, and they roughly fall into two categories: texture­
based and connected component (CC)-based. 

Texture based methods [2] [3] are based on the observation 
that text regions in images have distinct textural properties 
in contrast to non-text regions. Those methods slide a sub­
window in multi-scales through all locations of the image 
using a trained classifier to decide whether the sub-window 
contains text or not. The exhaustive search makes the compu­
tation of texture-based methods costly. 

CC based methods first cluster pixels with similar properties 
(e.g. color, intensity, stroke width, etc) into CCs in the hope 
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that text pixels and non-text pixels are in different CCs. Then 
text CCs are identified and grouped into text lines. Researcher­
s frequently use color, stroke width transform (SWT) and 
maximally stable extremal regions (MSERs) to cluster pixels 
into CCs. Deciding cluster number is the main difficulty for 
color clustering based methods [4]. SWT based and MSERs 
based methods are both related to local thresholding. SWT 
based methods [5] [6] rely heavily on the results of edge 
detection, which can be seen as local binarization in a small 
neighborhood. Finding MSERs can be seen as a process to 
find local binarization results that are stable over a range of 
thresholds. To reduce the missing of text CCs, MSERs based 
methods [7] [8] [9] [lO] generate tremendous non-text CCs, 
including many ambiguous ones. 

Unlike that many methods have been proposed for scene 
text detection, few works have been published specifically 
for born-digital images. Because born-digital images present 
different characteristics from scene images, it is not necessarily 
true that methods developed for scene images are appropriate 
for born-digital images. Text strokes in born-digital images 
usually have complete contours and pixels on the contours 
have high contrast compared with the adjacent non-text pixels. 
This is often not true for text in scene images due to non-ideal 
camera-capturing environment. Based on this observation, we 
identify text contour pixels and utilize them to segment an 
image into text and non-text regions. We then apply bina­
rization to each text region separately to get candidate CCs. 
Compared to SWT based methods, we have larger regions for 
binarization. And unlike MSERs based methods, we only need 
to check a single threshold rather than a range of thresholds. 
As a result, we have more stable results than SWT based 
methods, and generate far less non-text CCs than MSERs 
based methods. 

In the next section, we give the details of the proposed 
method. Section III presents experimental results and Section 
IV concludes the paper. 

II. ME THOD 

Our system consists of three stages as shown in Fig. l. 
For an image of multi-color text elements and cluttered back­
ground, global binarization methods with a single threshold 
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usually cannot separate all text elements from the surround­
ings. Instead, if we segment the image into non-text and 
candidate text regions so that each candidate text region 
contains one type of text, then we can binarize each candidate 
text region separately to generate candidate text CCs. This is 
what we do in the first stage and the main contribution of 
this paper. Then the CCs undergo CC filtering, line grouping 
and line classification to give the text localization result in the 
following two stages. 

Fig. 1. Block diagram of the proposed algorithm. 

A. CCs generation 

Text strokes in born-digital images mostly have complete 
contours, so we can use the contours to detach text pixels 
from the adjacent non-text pixels. The text pixels on the 
contours have high contrast compared with the adjacent non­
text pixels, and we can identify them based on local contrast 
thresholding. As illustrated in Fig. 2, we segment an image 
(Fig. 2(a)) into smooth (Fig. 2(b)) and non-smooth regions 
(Fig. 2(c)), with pixels of small local contrast constituting 
smooth regions, and pixels of large local contrast constituting 
non-smooth regions. The threshold is selected to guarantee 
that text contour pixels are segmented into non-smooth regions 
(Fig. 2(c)). The smooth region may also contains text pixels, 
which are usually in the inner area of strokes. We identify 
such text smooth regions (Fig. 2(d)), and merge them with 
non-smooth regions. Then each merged region (Fig. 2(e)) is 
binarized separately to generate low-value and high-value CCs 
in image L (Fig.2 (0) and H (Fig. 2(g)), respectively. 

Fig. 2. An illustration for CCs generation. White pixels are used to isolate 
different regions. (a) An input image. (b) Smooth regions. (c) Non-smooth 
regions. (d) Text smooth regions selected from b. (e) The merging result of 
non-smooth regions and text smooth regions. (f) Image L with low-value CCs. 
(g) Image H with high-valued CCs . 

1) Smooth/non-smooth regions segmentation: The gradient 
magnitude of a pixel can be used to measure the local 
smoothness. We compute the gradient magnitudes of all pixels 
and split them by a threshold T selected heuristically. As 
a result, pixels with magnitudes smaller and larger than T 
constitute smooth (Fig. 2(b)) and non-smooth regions (Fig. 
2(c)), respectively. 

For each pixel, we calculate its gradient magnitudes in 
RGB channels separately using the Sobel operator, and use 
the largest among the three as the final magnitude. 

The threshold is selected to guarantee that text contour pix­
els are classified into the high-contrast (non-smooth) regions. 
Assuming that text pixels and neighboring non-text pixels have 
at least a gap of 15 in a certain channel, which is reasonable 
for born-digital images, then the gradient magnitudes of those 
pixels are approximately equal to 60. Therefore, we set T 
empirically as 60. 

2) Text smooth regions selection: We can abandon smooth 
regions consisting of only non-text pixels without affecting 
the text localization result. The smooth regions containing text 
pixels (Fig. 2(d)) are merged with non-smooth regions (Fig. 
2(c)) to form a candidate text image (Fig. 2(e)). 

When selecting text smooth regions (we treat each region 
as a CC), we deal with small-sized and large-sized regions 
differently. Small-sized text regions lose the shapes of the 
original text (e.g. we cannot read HL" in Fig. 2(d)). Thus we 
select all small-sized regions to ensure that no small-sized text 
regions are excluded. On the other hand, we use a textlnon­
text CC classifier to select large-sized text regions because 
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TABLE I 
11 FEATURES EXTRACTED FROM A CC C FOR TEXT SMOOTH REGION 

IDENTIFICATION, WITH 8, Con, S AND Cs REPRESENTING ITS BOUNDING 

BOX, CONTOUR, SKELETON AND CONTOUR OF THE SKELETON (FIG. 3 
SHOWS AN EXAMPLE), RESPECTIVELY. WE USE THE THINNING 

ALGORITHM PROPOSED IN [11] TO GET S. 

# Description 
1 The Euler number of C 
2 The number of pixels in C divided by the area of 

B 

3 The width of B divided by the height of B 

4 The area of the convex hull of C divided by the 
area of B 

5 For the CC image, the average number of white­
to-black or black-to-white transitions of all rows 

6 For the CC image, the average number of white-to-
black or black-to-white transitions of all columns 

7 The stroke width of C divided by the height of B 

8 Stroke width consistency 
9 The number of endpoints in S 
lO The number of pixels in S divided by the number 

of pixels in Con 
11 The similarity of C and S 

they preserve the shapes of the original text (e.g. we can read 
"SA" in Fig. 2(d»). Heuristically, we identify a region as large­
sized if its stroke width is larger than three. We compute the 
stroke width of a CC as follows. For a CC C, we adopt an idea 
similar to the one proposed in [12] to assign a value equal to 
the stroke width to each pixel. We first use distance transform 
[l3] to compute the distance from each pixel to the nearest 
background pixel, and pixels at the skeleton of C are assigned 
a value equal to half the stroke width. Then the stroke width 
information is propagated from the skeleton to the boundary 
so that every pixel in C has a value representing stroke width. 
We compute the stroke width of C as the mean of all the 
values. 

For text/non-text CC classification, we use a linear support 
vector machine (SVM) as the classifier, trained with the 11 
features presented in Table I. The features are extracted based 
on the contour, area, bounding box, skeleton and stroke width 
of a Cc. The first 8 features characterize the properties which 
have been considered quite often in the problem of text/non­
text CC classification. We propose three new features which 
consider the relationship between the CC and its skeleton. The 
features # 1-7 are calculated straightforwardly. The features #8-
11 are elaborated below. 

• Feature #8. Via skeletonization and distance transform, 
we have a value to represent stroke width for each pixel. 
We measure the stroke width consistency as the standard 
deviation divided by the mean of all the values. 

• Feature #9. We call a pixel an endpoint of a skeleton 
if it has only one 8-connected neighboring pixel. For 
example, "F" has three endpoints (Fig. 3(d». The number 
of endpoints reflects the number of strokes in a character. 

• Feature #lO. Because a character and its skeleton share 
similar structures, we can recognize a character by its 
skeleton. The more similar a CC is with its skeleton, the 
closer the value of feature #lO is to 0.5. Therefore, feature 
#lO reflect this similarity roughly . 

• Feature #1l. The directional feature of stroke contour 
has been adopted in character recognition [14], and 
it is approximately invariant to stroke width variation. 
Therefore, a text CC should share a similar directional 
feature of contour with its skeleton. We adopt the method 
of Liu et al. [14] to compute directional features. A 
CC image is decomposed into 4 directional subimages 
by a raster scanning. The codes 0, 1, 2, 3 correspond 
to horizontal, left-diagonal, vertical and right-diagonal 
direction, respectively. The feature vector is composed of 
the histograms of the direction codes, and the similarity of 
a CC and its skeleton is computed as the cosine similarity 
between their feature vectors. 

(a) (b) (c) (d) (e) 

Fig. 3. An example of a CC and its skeleton. (a) A CC "F". (b) The red 
rectangle is the bounding box of "F". (c) The contour of "F". (d)The skeleton 
of "F". (e) The contour of the skeleton of "F". 

3) Text regions binarization: After merging text smooth 
regions with non-smooth regions, most regions in the merged 
image contain only one type of text (Fig. 2(e». Therefore, 
we can apply binarization to each region separately to get 
text CC candidates. In the sense of classifying each pixel as 
either foreground or background, binarization is a two-class 
classification problem. Otsu's binarization algorithm [15] aims 
to maximize the ratio between inter-class variance and intra­
class variance. We apply Otsu's binarization algorithm in RGB 
channels separately, and choose the channel with the biggest 
ratio as the result. To facilitate following procedures, we place 
high-value and low-value CCs in image H and L (Fig. 2(f), 
(g», respectively. 

There are non-ideal cases when a text region contains not 
only text pixels and background pixels adjacent to strokes, but 
also pixels in other parts of the image (e.g. the first column of 
Fig. 4). However, since text pixels and the adjacent non-text 
pixels are contrasted, they are very likely to be binarized into 
different images, and thus form text CCs and non-text CCs 
separately (e.g. the last two columns of Fig. 4). 

B. CC analysis 

After binarization in the merged candidate text image as 
described above, we select text CCs by text/non-text CC 
classification and recovering some rejected CCs. We adopt 
the same text/non-text CC classifier as used in Sect.II-A2, and 
remove the CCs which are labeled as non-text. Then we adopt 
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Fig. 4. Text pixels and adjacent non-text pixels are separated by binarization. 
Left: regions isolated by white pixels. Middle: image L with low-value CCs. 
Right: image H with high-value CCs. 

the method of Gonzlez et al. [16] to recover some rejected 
CCs. The main idea is that a CC should be recovered if it has a 
neighboring text CC and they meet several heuristic constraints 
concerning color, stroke width, distance and alignment. 

C. Text line analysis 

We adopt the method of bai et al. [17] to group CCs into text 
line candidates. Two neighboring CCs are linked into a pair 
if they obey several heuristic constraints. Then pairs sharing 
a common CC are merged sequentially to construct text line 
candidates until no pairs can be merged. We abandon all lines 
consisting of less than two CCs and apply text/non-text line 
classification to the remaining lines. The classifier is a linear 
SVM with the features in Table II. 

Then we use the method of Bai et al. [17] to separate text 
lines into words according to horizontal distances between 
consecutive CCs, and combine the results from images H 
and L. We use arbitrarily oriented minimum bounding boxes 
(AOMBBs) to represent words. If there are two AOMBBs 
which have a overlapping area larger than one fourth the 
smaller one's area, they are replaced by an AOMBB which 
contains them precisely. We do this sequentially until no more 
AOMBBs can be merged. At last, an AOMBB localizes a word 
in the original image. 

III. EXPERIMENTAL RESULTS 

We evaluated the performance of our method on the 
database of the ICDAR2013 robust reading competition -
Challenge 1: Reading Text in Born-Digital Images (Web and 
Email) [18]. 

The born-digital dataset comprises images extracted from 
web pages (news, personal, commercial, social, government, 
etc) and email messages (spam, newsletters, etc). There are 
551 of them with a minimum size of 100 * 100 pixels, 
out of which 410 and 141 images are used for training and 
test, respectively. The organizers of the competition maintain 
a website [19] where the dataset with ground truth can be 
downloaded after registration. The website also accepts detect­
ed results and outputs the evaluation results. The evaluation 
protocol is described in the report of the competition [18]. It is 

TABLE II 
NINE FEATURES EXTRACTED FROM TEXT LINE CANDIDATE L WITH N CCs 
(q, C2, ... , en). FOR A CC, WE DENOTE THE AVERAGE RBG VALUES OF 

ALL PIXELS AS (r, g, b), THE STROKE WIDTH AS SW AND THE HEIGHT AS h. 

FEATURE #4, #5 AND #6 ARE FURTHER NORMALIZED TO [0, I] BY 

DIVIDING 255. 

# Description 
The average of the text/non-text CC classification 
output scores of Cl, C2, ... , Cn 

2 min(swl, ... , swn)/ max(swl, ... , swn) 

3 max(swl, ... , swn) - min(swl, ... , swn) 

4 max(rl, ... , rn) - min(rl" .. , rn) 

5 max(gl, ... , gn) - min(gl,' .. , gn) 

6 max(b1, ... , bn) - min(b1, ... , bn) 

7 The height of L divided by the width of L 

8 The total horizontal distances between consecutive 
CCs divided by the width of L 

9 The average of regression errors when fitting the 
centers of Cl, C2, ... ,Cn with a straight line using 
least square error regression divided by the average 
height of Cl, C2, ... ,Cn 

TABLE III 
RANKING OF OUR METHOD AND THE METHODS SUBMITTED TO 

ICDAR2013 ROBUST READING COMPETITION ON BORN-DIGITAL 

DATASET. 

Method Name Recall (%)Precision (%)F-score(%) 
Our method 85.80 91.57 88.59 
USTB TexStar [9] 82.38 93.83 87.74 
TH-TextLoc 75.85 86.82 80.96 
I2R NUS FAR 71.42 84.17 77.27 
Baseline 69.21 84.94 76.27 
Text Detection [20], [21] 73.18 78.62 75.81 
I2R NUS 67.52 85.19 75.34 
BDTD CASIA 67.05 78.98 12.53 
OTCYMIST [22] 74.85 67.69 71.09 
Inkam 52.21 58.12 55.00 

based on word-level match over the whole test set, taking into 
account one-to-one, one-to-many and many-to-one matches 
between detected and ground truth text boxes. We present 
the results of our method and the methods submitted to the 
competition in Table III. Brief descriptions of the submitted 
methods can be found in [18]. The winner was USTB_TexStar, 
a method based on MSER segmentation. It also won the task 
of scene text localization. 

The results in Table III shows that our proposed method 
yields superior performance compared to the competition 
results in ICDAR2013. After CC segmentation, we use con­
ventional techniques for CC filtering, line grouping and word 
partitioning. The superior performance indicates that the pro­
posed local contrast-based segmentation method is promising. 

Fig. 5 shows some examples of successful detection on 
images in the dataset. 

Fig. 6 shows two failure cases in our experiments. For 
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Fig. 5. Examples of successful text localization results. 

Fig. 6(a), we miss the text because our method cannot handle 
curved text lines. In Fig. 6(b), we identify a non-text region 
as text because it has text-like features. 

(a) (b) 

Fig. 6. Two failure cases of text localization. 

IV. CONCLUSION 

We proposed a new CC based method for text localization 
in born-digital images. By segmenting an image into text and 
non-text regions based on local contrast, each text region is 
binarized to generate text CC candidates. The CCs undergo 
CC filtering, line grouping and line classification to give the 
final result. Our method has achieved state-of-the-art perfor­
mance on the born-digital dataset of ICDAR2013 Competition, 
convincingly demonstrating the effectiveness. We anticipate 

higher performance if we improve the algorithms for CC 
classification and line grouping in the future. 
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