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Abstract-Text zone classification is a vital step in the dig­
itization process, without which OCR systems perform poorly. 
Prior methods to document zone classification have relied on large 
sets of hand-crafted features for training zone classifiers. Such 
features are usually database-dependent, and their computation 
is time consuming. In this work we propose a novel method for 
text zone classification that relies on the approach of unsupervised 
feature learning. Within our method, feature vectors of document 
zones are automatically learned by patches extraction, encoding 
and pooling, where feature encoding is based on a codebook 
of visual words. The training phase of the text classifier takes 
into consideration the unbalance between text zones and non­
text zones of all types. The proposed method has been tested on 
publicly available standard databases, and achieved competitive 
or better results compared to state-of-the-art methods. The 
results show that our approach matches well the task of text 
classification, and is robust to zone shapes, orientations and size. 

I. INTRODUCT ION 

Within the processing chain of document analysis systems, 
a document image is converted to a representation of structure 
and content, in order to allow later steps of automatic document 
understanding. One important subtask within this processing 
chain is zone classification. This task allows content type­
specific processing, for example applying OCR on text zones, 
document classification based on logos, table reading, image 
processing for graphics etc. 

A layout analysis step segments a document into a set 
of blocks (regions or zones), which are not necessarily rect­
angular. After that, it is necessary to have a zone classifier 
for identifying the types of the segmented zones as one of a 
set of predefined classes such as text, image, graph, halfone, 
line drawing, table, separator, noise, handwritten content etc. 
The misclassification of document zone types leads to high 
error rates in all subsequent processing in the document un­
derstanding chain. Moreover, classifying zone types is crucial 
to indexing and retrieval of large document databases. 

In this work we focus on the identification of the con­
tent type of detected document zones by classifying them 
into text or non-text. Rather than investing a lot of effort 
in designing features that are tuned to specific zone types 
in specific databases, we present instead, an approach for 
automatically learning a powerful feature vector for the zone 
classification task. By unsupervised feature vector construction 
and a standard learning tool such as SVM classifiers, we are 
able to achieve competitive or better performance than state­
of-the-art methods. The general approach of automatic feature 
learning has been successful in many computer vision tasks 
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[1]. We have adopted and specialized this approach to our zone 
classification problem to achieve high accuracy and robustness 
to zone shapes, orientations and size. 

(a) Text and non-text zones from the UW-III dataset. 

(b) Text and non-text zones from the PRImA dataset. 

Fig. 1. Example segmented document zones from the datasets used in 
the evaluation of our system. Different zones are shown in different colored 
bounding boxes. The zones have variable sizes, orientations and shapes. 

The main idea behind feature learning is to automatically 
find a set of features that are relevant to the task in hand. 
In contrast to all previous approaches in zone classification 
- which rely on features carefully designed based on prior 
knowledge of a document database -, our approach is able to 
find the relevant features in a completely unsupervised manner. 
Figure 1 shows example document zones that we consider as 
input in our text zone classification problem. The zones have 
large variability in size, shape and orientation. Text content for 
example may be at letter, word, line or paragraph level. 

II. RELATED WORK 

A review of prior work in document zone classification can 
be found in the survey of Okun et al. [2], and in the works 
of Wang et al. [3], [4]. According to the classification made 
by Wang et al. [4]; the two categories of zone classification 
methods either include segmentation [5] or not [3], [4], [6]. We 
review here the methods that focus on the already extracted 
zones, as our approach falls in this category. The approach 
followed in the vast majority of these methods is based on 
extracting a set of different types of features from zones, and 
then learning a model for classifying zones' types. 
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(a) Text and non-text zones from the UW-III dataset.
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Wang et al. [3], [4] extracted a large set of zone charac­
teristics including run-length features, spatial features such as 
the pixel distribution of zone foreground, and autocorrelation 
features. With those features, they trained an optimized de­
cision tree classifier. Contextual constraints are incorporated 
in the classification of some zones using HMMs. Keysers et 
al. [6] extended the work of Wang et al. [4] by presenting 
a detailed analysis of the used features and their power in 
zone classification. They used a comprehensive set of features 
most of which are the features used by Wang et al. [4]. 
They used a nearest neighbor classifier with introducing a 
new a speckle noise class in addition to the other typical 
zones types. Lin et al. [5] used different texture-based GLCM 
(Grey Level Co-occurrence Matrix) features, and their method 
included a segmentation step. They divided a document into 
blocks of graphics, text and space zones, and used K-means for 
clustering the blocks into zones. They then used pre-learned 
heuristic rules for zone classification. 

As many features of different types had already been tested 
for the zone classification task, other researchers proposed 
improving the learning part of methods. Abd-Almageed et al. 
[7] proposed a novel hybrid learning method which combines 
the benefits of both one-against-all and one-against-one voting 
schemes. They used typical structural features such as run 
length, and texture features such as Local Binary Pattern 
(LBP) and autocorrelation features among others. They also 
used partial least squares on pairs of classes to compute 
discriminating pairwise features. Bouguelia et al. [8] proposed 
to use an incremental learning method where the classification 
relies on a reject utility in order to reject ambiguous zones 
or documents. Their trained model is updated incrementally 
each time a new document and its extracted zones are added 
and learned. They used run-lengths and connected components 
features. Their zone classes do not contain printed text, but 
rather: handwritten annotations, stamps, signatures etc. 

Other researchers presented special purpose zone classi­
fication methods. Kumar et al. [9] developed a method for 
classifying handwritten versus machine printed text zones. 
They used shape-based triple-adjacent-segment (TAS) features. 
They constructed two shape code books from those features for 
each class. Each zone is represented by a normalized histogram 
of codewords as a feature vector, which in turn is used to train 
an SVM classifier. Their approach is robust to background 
noise, and their features are invariant to text transformation. As 
we discussed in the previous section, our method differs from 
all the methods reviewed above, as we follow an automatic 
feature learning approach. 

III. THE FEATURE LEARNING ApPROACH 

Our approach for text classification follows the global 
generic framework of feature learning employed in several 
computer vision and deep learning methods [1]. Figure 2 shows 
a block diagram of the proposed approach. It consists of three 
main parts: feature representation, feature vector construction 
at image-level and finally training and classification. The first 
part, feature representation, discovers features from unlabeled 
data by learning to map input data to features. The second 
part extracts data features and constructs fixed-size feature 
vectors based on feature pooling. Those two parts represent 
the complete process of feature learning, and they are carried 

out completely unsupervised. The result of those two parts is 
a set of feature vectors that correspond to document zones in 
a database. Given a set of labeled training zones, the third part 
in our framework, trains a classifier to predict labels (i.e. zone 
types) of test zones. The details of each of the parts of our 
approach are described in the following subsections. 

Feature Vector � 
Construction 

Patch extraction 

+. . zone labels 
Call Patch Encoding t l I Zone classification 

Featur1Pooling • trained model 

(Image-level .\ I� · image-level feature vectors 

feature vector� of test images 

Fig. 2. Block diagram of the proposed zone classification system based on 
unsupervised feature learning. 

A. Learning Feature Representation 

In a high-level view, this part of the framework can be 
represented as a block that takes a dataset of images S as input, 
and outputs a function f : IRd -7 IRK that maps a dataset input 
vector Xi to a new vector of K features, where K is an input 
parameter. In order to learn such a function f, we perform the 
following steps: 

• Randomly sample M patches as input vectors xi from 
a dataset of unlabeled training images D 

• Normalize and whiten the patches 

• Apply an unsupervised learning algorithm (ex. k­
means clustering) on the patches to learn the mapping 
function f 

The dataset S in our case is a set of training images where each 
image is a zone (region) in a document image. We assume that 
the regions of the document images in the database have been 
identified by a layout analysis algorithm. In the first step, we 
randomly sample M patches from the unlabeled zone images: 
S = {xl, . . .  , xm} where xi E IRd. A patch is a vector of d 
pixel intensity values. 

Each patch Xi is then normalized by subtracting the mean 
and dividing by the standard deviation of its elements. This 
step is an essential factor in feature learning of visual data, as 
it results in the normalization of local brightness and contrast. 
After that, the entire dataset S is whitened to achieve decor­
relation. Whitening transforms input data to have a diagonal 
covariance matrix. This step is crucial to clustering algorithms 
since they are blind to correlations in the data. 

After that, k-means clustering algorithm is used an unsu­
pervised learning algorithm to learn f. The normalized input 
patches are mapped into K clusters, and hence, K centroids 
ck are learned. Then the feature mapping f of an input data 
vector x is computed as follows: 

A(x) = max{O,J.l(z) - Zk} (1) 

where fk (x) denotes the kth feature in the output vector, Zk = 

Ilx - ckl12 ' and J.l(z) is the mean of z. This step performs 
a non-linear mapping from an input data patch to a feature 
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vector representation of that patch. This mapping is also called 
encoding. We can view this process as feature encoding, where 
a visual code book (the K centroids ck) is learned by k-means 
clustering. Then each data patch is encoded in terms of the 
code book ck visual codewords. There are many choices for 
encoding function fk(X). For example, there is the typically 
used l-of-K hard assignment, where an input patch is assigned 
only to one of the K codewords. Our choice belongs to soft 
encoding functions, because it has shown better performance 
in previous computer vision works [1]. 

B. Feature Vector Construction at Image Level 

Now we have a feature representation function that can 
represent image patches into features. However, we do not have 
a feature vector of the entire image (the image of a document 
zone). Moreover, feature vectors at image level have to be of 
fixed size to be eligible as input for later steps of training and 
classification. In order to construct such feature vectors, we 
perform the following three steps: 

• Extract N random patches from an input image X, 
X = {xl, . . .  ,xN} 

• Encode each of the extracted patches using Eq.(l) to 
get the encoded image representation ENxK 

• Pool the encoded matrix of features E into a feature 
vector Fj = max{Ejl,Ej2, . . .  ,EjN}, where j E 
{I, 2, ... K} 

In the first step we randomly extract N equally sized patches 
from an image. Note that the sizes of input images are 
different, hence N is not the same for all images. Note also 
that N is not necessarily equal to M mentioned in the previous 
subsection. M should be chosen such that we have enough 
representative patches for constructing the visual codebook, 
whereas N is the number of patches that are used to construct 
a feature vector of an image. After patch extraction, we have 
a matrix XNxd of patches for each input image. In the second 
step, we encode each patch xi E ]Rd according to Eq.(l) to get 
a patch representation P E ]RK. For the whole image X, the 
encoding process results in a matrix ENxK where each row is 
an encoded patch. Finally we perform maximum pooling along 
the columns of matrix E to get a feature vector hXK for each 
image. This vector represents the features of an image, and it 
has the same fixed size lxK for all the images. 

C. Training of a Zone Classifier 

The above two subsections have shown how to automat­
ically compute a feature vector of a certain size from any 
image. This makes it easy to use any available supervised 
learning and classification method for solving the task for 
zone classification. In this work, we are concerned with the 
classification of text zones versus all other types of zones, 
because finding and classifying text zones is a very important 
step for OCR systems and other document analysis processes. 
Having a set of zone images of a dataset (as shown in Figure 
1), we compute a feature vector for each zone image. From 
the ground-truth of a dataset, we have the labels of each zone 
type (each document region type). The problem is represented 
as a binary classification problem with two labels: "text" to 
represent documents text zones, and "non-text" to represent 

all other zone types such as: image, table, drawing, graph, 
equation, separator etc. 

An SVM classifier is trained on the zones' feature vectors 
with their corresponding labels. Note that in most databases, 
the number of text zones is much larger than the number 
of non-text zones, hence the training data is unbalanced. To 
that end, we increase the number of training samples of non­
text zones as follows. We perform the step of random patch 
sampling two to three times for each zone image of type non­
text, to get different sets of patches, and hence different feature 
vectors of a zone image. For a zone image of size nxn pixels, 
and a patch size of wxw, there are (n - w + 1) * (n - w + 1) 
overlapping patches with a sliding step of one pixel. For a 
small image of 512x512 pixels, there are 256036 patches. This 
is a huge number of patches that is much more than needed for 
creating a representative rich feature vector. In many feature 
learning research works as well as in this work, N is set to 
a number between 1000 and 10000 patches that are randomly 
extracted from an image to construct the image-level feature 
vector as described in subsection III-B. If we extract two 
different sets each of size 2000 of random patches, we can 
get two different feature vectors of the same training sample. 
We additionally set a larger learning weight in the SVM for 
the class "non-text". In the classification phase, we construct a 
feature vector for each test zone image, and use this vector as 
an input to the trained classifier, in order to predict the label 
of a zone image as text or non-text. 

IV. EXPERIMENTAL EVALUATION 

We have implemented our feature learning approach in 
a zone classification system, and evaluated this system on 
standard databases in document layout analysis. In the fol­
lowing subsections we detail the databases, the settings of our 
experiments and analyze the results. 

A. Databases 

Two datasets have been used in our experiments. The first 
is the University of Washington III (UW-III) dataset [10]. The 
database contains 1600 English binary scanned document im­
ages along with their zone-level ground truth. The ground truth 
is represented by bounding boxes of 24254 page zones (page 
regions). Those bounding boxes are labelled as either text or 
non-text. A non-text region could be an equation, line drawing, 
halftone, table, image, chemical formula etc. This ground 
truth makes the dataset very suitable for layout analysis, page 
segmentation and segmented zone classification purposes. The 
documents in the UW-III dataset have different degradation 
levels due to photocopy process, so, the same document could 
appear multiple times with different degradation. This dataset 
is rather old. 

The second dataset used in our evaluation is the ICDAR-
2009 competition dataset called "PRImA" [11]. The main 
purpose of the PRImA dataset is layout analysis tasks like 
page segmentation and zone classification. The set contains 
55 contemporary colored documents. The ground truth contain 
precisely located zones using polygons rather than bounding 
boxes, as the zones might not always be rectangular. The 
documents' zones are labelled as text, separator, graph, image 
or line art. We relabel those zones as text or non-text, due to the 
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Fig. 3. Example document images from the datasets used in the evaluation 
of our system. 

few available examples of each type of non-text zones, and also 
because we are mainly concerned by the ability to distinguish 
text from non-text regardless of the type of non-text. Example 
documents from both data sets are shown in Figure 3. 

Note that in both datasets, non-text zones could contain 
text, for example, like annotations inside images, or text in 
tables. This makes it challenging to classify non-text regions, 
specially for bottom-up layout analysis methods. Figure 4 
shows examples of non-text regions that contain text. 
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(a) UW-III dataset document zones. 
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(b) PRImA dataset document zones. 

Fig. 4. Challenging document zones: Text appears in non-text zones. 
However, they are correctly classified by our system. (Different zones are 
shown in different colored bounding boxes.) 

B. Experimental Settings 

We use the same parameter settings for testing both 
databases. The train/test data are 60% and 40% respectively. 
This is a common train/test ratio as used with typical learning­
based approaches that do not use feature learning to construct 
feature vectors. As the construction of the codebook and 

feature vectors is based on random extraction of patches, 
we have executed the system 200 runs per one parameters' 
setting. Unless otherwise stated, the results that we show are 
the average across the 200 runs. 

Now we come to the parameters that are directly related 
to the feature learning algorithm itself. The number of patches 
that are randomly sampled from each image - denoted M or 
N in previous sections -, is set in each experiment to one 
element in the set: {lOOO, 1500, 2000, 2500, ... , 5000}. Next, 
we have varied the number of clusters K - i.e the size of 
the image-level feature vector - to one element in the set: 
{32, 49, 64, 128, 256, 512, 1024}. Finally, we have varied the 
patch size to one element in the set: {5, 7, 8, 9}. 

C. Results and Analysis 

Table I shows the average accuracies of the proposed 
zone classification method on the complete datasets: UW­
III and PRImA. The shown results are for the experimental 
setting that achieved best results: K = 128, patch size = 7, 
number of patches = 2000. Note that a small size of the visual 
code book is enough to achieve highly accurate results. Small 
codebook means a similarly small-sized feature vector, which 
means very fast computation time per sample at test phase, 
and also less memory requirements for storing the trained 
model and the codebook. This is an advantage over what is 
commonly encountered in computer vision applications that 
use a somewhat similar feature learning approach. We argue 
that this indicates the suitability of feature learning approaches 
for text zone classification, as only a small number of visual 
codewords is needed to represent patches of text characters, 
whereas in natural images, a large number of visual words 
is required for representing images of some content type like 
flowers or animals. The same argument can be made for the 
number of patches extracted from each zone image. 

TABLE I. ZONE CLASSIFICATION ACCURACIES OF THE PROPOSED 
METHOD. THE SHOWN ACCURACIES ARE AVERAGE FOR 200 RUNS. 

Dataset Zone TYpe # Zones Accuracy 

Text 21705 98.9% 

UW-1II Non-text 2549 82.3% 

All zones 24254 97.4% 

Text 952 97.2% 
PRImA Non-text 294 93.2% 

All zones 1246 96.3% 

We can see from the results' table, that the non-text class 
is challenging to learn. This is due to two reasons: first, it 
contains multiple different sub-classes such as separators, line 
drawings and natural images which have very different visual 
appearances. The second reason is that some of the subclasses 
such as table and graph actually contain text, which might 
cause confusion with the text class. Figures 5 and 6 show 
examples of error cases by our system for both classes. 

Now we turn to discussing the effect of varying the param­
eters settings explained in subsection IV-B. We have carried 
out experiments for all combinations of parameters' settings. 
It is worth mentioning though, that in previous research works 
in deep learning and computer vision, the effect of varying 
such parameters have been extensively studied for different 
problems and databases. Hence, we will just comment on 
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Management Network Router ODoS Postmortem Traceback 
Technique overhead overhead overhead handling capability speed 
Ingress filtering Moderate low Moderate N/A N/A N/A 
Input debugging High low High Good N/A Slow 

Controlled flooding low High low Poor N/A Slow 

Logging High low High Excellent Excellent Slow 

� 
ICMPtraceback low low low Good Excellent 

-
MOderate 

Packet marking low low low Good -
Excellent Moderate 

SIPT Low Very low low Good Excellent Fast 

(a) Non-text classified as text. Note that all the zones contain text, specially 
the last one with a lot of text and few separators. 

(b) Text classified as non-text. On the left, the zone is exactly like non-text 
zones in other documents. On the right, the misclassification happened due 
to the very large font used, which was not available in the training, the size 
of this zone is 984x 1090 pixels. 

Fig. 5. Misclassification cases by the proposed system in the PRImA dataset. 

those parameters briefly. Our system is in fact robust to at 
least a range of parameter values: in all the experiments with 
different parameters' values combinations, the overall zone 
classification accuracy for PRImA has varied between 92.2% 
and 96.4%, with the lower values achieved for smaller numbers 
of patches and smaller sizes of codebook. However, starting 
from 2000 patches per image, and 128 for codebook size, the 
performance stabilizes with ±1 %. Similar behavior has been 
noticed for the UW-III dataset but with much less variance, 
where the overall zone classification accuracy has varied 
between 95.9% and 97.5%. The better results are naturally 
due to the availability of more training samples, and that the 
region shapes of the UW-III dataset are less complicated than 
those of the PRImA dataset. 

Fig. 6. Misclassification cases by the proposed system in the UW-Ill dataset. 
The first from left is a non-text zone classified as text. The next three are 
text zones classified as non-text. Due to their very small size, the extracted 
features are not really representative of any zone type. 

Finally, we would like to compare our method to state-of­
the-art zone classification methods that are based or large sets 
of hand designed features. Table II shows this comparison with 
the two best performing methods for the UW-III dataset. Note 
that an exact comparison among the methods is not possible, 
as different zone types (classes) are used. As for the PRImA 

dataset, we are not aware of available state-of-the-art results. 

TABLE II. COMPARISON OF OUR METHOD TO STATE-OF-THE-ART 
ZONE CLASSIFICATION METHODS ON THE UW-III DATASET. 

Method # pages # zones accuracy comments 

Wang et al. [4] 1600 24177 98.5% different zone 
This work 1600 24254 97.4% types are used 

Keysers el al. [6] 713 l 3811 98.5% 11804 + 
This work 713 11804 99.8% 2007 noise zones 

V. CONCLUSIONS AND FUTURE DIRECT IONS 

This paper has presented a novel method for text zone 
classification based on automatic learning of features rather 
than hand-crafted features. The part of feature learning is 
completely unsupervised and without domain knowledge. We 
have shown how to adopt the generic approach of feature 
learning to the problem of document zone classification, and 
that our approach fits very well this problem in terms of high 
performance and robustness on different datasets. 

For future work we would like to investigate the use of 
feature learning on other problems in text document analysis. 
Additionally, we will extend the zone classifier to multiple non­
text subclasses. We expect this to be an easy problem as non­
text subclasses have distinct visual properties, and the feature 
vector size can be increased to accommodate multi-class 
discrimination. Finally we would like to use more advanced 
algorithms for encoding patches, such as sparse coding. 
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